L(s) = 1 | + (−0.923 + 0.382i)3-s + i·4-s + (−0.382 + 0.923i)7-s + (0.707 − 0.707i)9-s + (−0.382 − 0.923i)12-s + i·13-s − 16-s + (−0.707 − 0.707i)19-s − i·21-s + (−0.707 + 0.707i)25-s + (−0.382 + 0.923i)27-s + (−0.923 − 0.382i)28-s + (−0.923 + 0.382i)31-s + (0.707 + 0.707i)36-s + (0.923 − 0.382i)37-s + ⋯ |
L(s) = 1 | + (−0.923 + 0.382i)3-s + i·4-s + (−0.382 + 0.923i)7-s + (0.707 − 0.707i)9-s + (−0.382 − 0.923i)12-s + i·13-s − 16-s + (−0.707 − 0.707i)19-s − i·21-s + (−0.707 + 0.707i)25-s + (−0.382 + 0.923i)27-s + (−0.923 − 0.382i)28-s + (−0.923 + 0.382i)31-s + (0.707 + 0.707i)36-s + (0.923 − 0.382i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5682174750\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5682174750\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - iT^{2} \) |
| 5 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (0.382 - 0.923i)T + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (0.923 - 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.923 + 0.382i)T + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-0.382 + 0.923i)T + (-0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.765 - 1.84i)T + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-1.84 - 0.765i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.382 - 0.923i)T + (-0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06258913277426156903390596079, −9.607366004312563640444562770179, −9.209344989691559448414941927491, −8.243860437815478804764483796257, −7.06869835139934465974449310806, −6.45043205844592216306177969425, −5.42174537559602722660763293303, −4.42263925596450581053736937023, −3.53577873862173420936528782757, −2.20549631315160500851622577935,
0.62625988479081856272552325485, 2.02142271067566542492406687942, 3.84051442890446429806688923347, 4.87545669220120192063998367424, 5.81117671675278552320785403460, 6.39654289074764816085500418947, 7.30459150814530236122024310263, 8.168009898068231008483121569042, 9.555554697214944076824948565018, 10.33272846224804028859234870005