Properties

Label 2-867-1.1-c1-0-10
Degree $2$
Conductor $867$
Sign $1$
Analytic cond. $6.92302$
Root an. cond. $2.63116$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.435·2-s − 3-s − 1.81·4-s + 4.22·5-s − 0.435·6-s − 2.90·7-s − 1.65·8-s + 9-s + 1.83·10-s + 0.559·11-s + 1.81·12-s + 1.50·13-s − 1.26·14-s − 4.22·15-s + 2.89·16-s + 0.435·18-s + 6.57·19-s − 7.64·20-s + 2.90·21-s + 0.243·22-s − 1.98·23-s + 1.65·24-s + 12.8·25-s + 0.653·26-s − 27-s + 5.26·28-s − 2.24·29-s + ⋯
L(s)  = 1  + 0.307·2-s − 0.577·3-s − 0.905·4-s + 1.88·5-s − 0.177·6-s − 1.09·7-s − 0.586·8-s + 0.333·9-s + 0.581·10-s + 0.168·11-s + 0.522·12-s + 0.416·13-s − 0.338·14-s − 1.08·15-s + 0.724·16-s + 0.102·18-s + 1.50·19-s − 1.70·20-s + 0.634·21-s + 0.0519·22-s − 0.414·23-s + 0.338·24-s + 2.56·25-s + 0.128·26-s − 0.192·27-s + 0.995·28-s − 0.417·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(6.92302\)
Root analytic conductor: \(2.63116\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 867,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.555235006\)
\(L(\frac12)\) \(\approx\) \(1.555235006\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - 0.435T + 2T^{2} \)
5 \( 1 - 4.22T + 5T^{2} \)
7 \( 1 + 2.90T + 7T^{2} \)
11 \( 1 - 0.559T + 11T^{2} \)
13 \( 1 - 1.50T + 13T^{2} \)
19 \( 1 - 6.57T + 19T^{2} \)
23 \( 1 + 1.98T + 23T^{2} \)
29 \( 1 + 2.24T + 29T^{2} \)
31 \( 1 + 2.41T + 31T^{2} \)
37 \( 1 - 4.90T + 37T^{2} \)
41 \( 1 - 7.01T + 41T^{2} \)
43 \( 1 - 5.38T + 43T^{2} \)
47 \( 1 - 7.70T + 47T^{2} \)
53 \( 1 - 10.2T + 53T^{2} \)
59 \( 1 + 0.354T + 59T^{2} \)
61 \( 1 + 4.96T + 61T^{2} \)
67 \( 1 + 3.56T + 67T^{2} \)
71 \( 1 + 3.72T + 71T^{2} \)
73 \( 1 - 8.61T + 73T^{2} \)
79 \( 1 + 2.73T + 79T^{2} \)
83 \( 1 - 9.16T + 83T^{2} \)
89 \( 1 + 17.6T + 89T^{2} \)
97 \( 1 - 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.949799769081406093949085094599, −9.437331285737346815343839738353, −8.964143105983958687636406208362, −7.40368607529912051342115198694, −6.21822001204779953367999058224, −5.84394940043633749347225417404, −5.12314091907152533287379051248, −3.85011561472312963805413108806, −2.67302605501544954268123419977, −1.05112400659151548298716561096, 1.05112400659151548298716561096, 2.67302605501544954268123419977, 3.85011561472312963805413108806, 5.12314091907152533287379051248, 5.84394940043633749347225417404, 6.21822001204779953367999058224, 7.40368607529912051342115198694, 8.964143105983958687636406208362, 9.437331285737346815343839738353, 9.949799769081406093949085094599

Graph of the $Z$-function along the critical line