Properties

Label 2-8640-1.1-c1-0-98
Degree $2$
Conductor $8640$
Sign $-1$
Analytic cond. $68.9907$
Root an. cond. $8.30606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 2·13-s + 3·17-s + 5·19-s + 3·23-s + 25-s − 6·29-s − 5·31-s − 2·35-s − 2·37-s − 12·41-s + 8·43-s − 12·47-s − 3·49-s − 3·53-s − 6·59-s + 7·61-s − 2·65-s + 2·67-s + 12·71-s − 16·73-s + 79-s + 15·83-s + 3·85-s + 12·89-s + 4·91-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 0.554·13-s + 0.727·17-s + 1.14·19-s + 0.625·23-s + 1/5·25-s − 1.11·29-s − 0.898·31-s − 0.338·35-s − 0.328·37-s − 1.87·41-s + 1.21·43-s − 1.75·47-s − 3/7·49-s − 0.412·53-s − 0.781·59-s + 0.896·61-s − 0.248·65-s + 0.244·67-s + 1.42·71-s − 1.87·73-s + 0.112·79-s + 1.64·83-s + 0.325·85-s + 1.27·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8640\)    =    \(2^{6} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(68.9907\)
Root analytic conductor: \(8.30606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8640,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 16 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.37682638552384433932572566594, −6.78087153782208371351120932155, −6.04677031648612258852720624225, −5.30452740982438204115491211417, −4.86816953691102107806545887845, −3.53504414022398929649170033593, −3.27283099980780212398513252150, −2.20481643293850327409860751663, −1.27808640296439589403710050675, 0, 1.27808640296439589403710050675, 2.20481643293850327409860751663, 3.27283099980780212398513252150, 3.53504414022398929649170033593, 4.86816953691102107806545887845, 5.30452740982438204115491211417, 6.04677031648612258852720624225, 6.78087153782208371351120932155, 7.37682638552384433932572566594

Graph of the $Z$-function along the critical line