Properties

Label 2-8640-1.1-c1-0-62
Degree $2$
Conductor $8640$
Sign $1$
Analytic cond. $68.9907$
Root an. cond. $8.30606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 6·13-s + 7·17-s + 7·19-s − 7·23-s + 25-s − 6·29-s − 3·31-s + 2·35-s + 6·37-s + 4·41-s + 8·43-s + 4·47-s − 3·49-s + 5·53-s + 6·59-s + 3·61-s + 6·65-s − 10·67-s − 12·71-s + 16·73-s − 79-s + 9·83-s + 7·85-s − 4·89-s + 12·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 1.66·13-s + 1.69·17-s + 1.60·19-s − 1.45·23-s + 1/5·25-s − 1.11·29-s − 0.538·31-s + 0.338·35-s + 0.986·37-s + 0.624·41-s + 1.21·43-s + 0.583·47-s − 3/7·49-s + 0.686·53-s + 0.781·59-s + 0.384·61-s + 0.744·65-s − 1.22·67-s − 1.42·71-s + 1.87·73-s − 0.112·79-s + 0.987·83-s + 0.759·85-s − 0.423·89-s + 1.25·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8640\)    =    \(2^{6} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(68.9907\)
Root analytic conductor: \(8.30606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.246566809\)
\(L(\frac12)\) \(\approx\) \(3.246566809\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 5 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 3 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81239295473233379077784529073, −7.28348193923657612111973074087, −6.13804575160525039712766109347, −5.69568468995998131868803278612, −5.26148488082895507630327656550, −4.05297786308371571243287583478, −3.62349445900645266899467343816, −2.62933892402557776457814827284, −1.54270187960776649729784848340, −1.00305233293312481201857581927, 1.00305233293312481201857581927, 1.54270187960776649729784848340, 2.62933892402557776457814827284, 3.62349445900645266899467343816, 4.05297786308371571243287583478, 5.26148488082895507630327656550, 5.69568468995998131868803278612, 6.13804575160525039712766109347, 7.28348193923657612111973074087, 7.81239295473233379077784529073

Graph of the $Z$-function along the critical line