Properties

Label 2-864-4.3-c2-0-30
Degree $2$
Conductor $864$
Sign $-0.707 + 0.707i$
Analytic cond. $23.5422$
Root an. cond. $4.85204$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.13·5-s − 4.02i·7-s − 4.30i·11-s − 18.4·13-s − 23.5·17-s − 21.7i·19-s − 30.7i·23-s + 1.34·25-s − 12.6·29-s + 24.5i·31-s − 20.6i·35-s + 18.2·37-s − 38.0·41-s + 34.9i·43-s + 29.6i·47-s + ⋯
L(s)  = 1  + 1.02·5-s − 0.575i·7-s − 0.391i·11-s − 1.42·13-s − 1.38·17-s − 1.14i·19-s − 1.33i·23-s + 0.0536·25-s − 0.437·29-s + 0.791i·31-s − 0.590i·35-s + 0.492·37-s − 0.929·41-s + 0.813i·43-s + 0.630i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(23.5422\)
Root analytic conductor: \(4.85204\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :1),\ -0.707 + 0.707i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.079782148\)
\(L(\frac12)\) \(\approx\) \(1.079782148\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 5.13T + 25T^{2} \)
7 \( 1 + 4.02iT - 49T^{2} \)
11 \( 1 + 4.30iT - 121T^{2} \)
13 \( 1 + 18.4T + 169T^{2} \)
17 \( 1 + 23.5T + 289T^{2} \)
19 \( 1 + 21.7iT - 361T^{2} \)
23 \( 1 + 30.7iT - 529T^{2} \)
29 \( 1 + 12.6T + 841T^{2} \)
31 \( 1 - 24.5iT - 961T^{2} \)
37 \( 1 - 18.2T + 1.36e3T^{2} \)
41 \( 1 + 38.0T + 1.68e3T^{2} \)
43 \( 1 - 34.9iT - 1.84e3T^{2} \)
47 \( 1 - 29.6iT - 2.20e3T^{2} \)
53 \( 1 + 39.3T + 2.80e3T^{2} \)
59 \( 1 + 65.3iT - 3.48e3T^{2} \)
61 \( 1 + 29.8T + 3.72e3T^{2} \)
67 \( 1 - 11.8iT - 4.48e3T^{2} \)
71 \( 1 + 140. iT - 5.04e3T^{2} \)
73 \( 1 - 119.T + 5.32e3T^{2} \)
79 \( 1 + 9.18iT - 6.24e3T^{2} \)
83 \( 1 + 113. iT - 6.88e3T^{2} \)
89 \( 1 + 7.88T + 7.92e3T^{2} \)
97 \( 1 - 55.5T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.572847290290593912337523060356, −9.044435753741510479694631512681, −7.943008780607658678008410314708, −6.87624165856754820297351036100, −6.35439286715931492289093826768, −5.08462067032860526111778781960, −4.45178133347758899977961341294, −2.88177125807138898549192342283, −1.98737975734990628337206339338, −0.31674358294651405334881898116, 1.82742473779440736304159085626, 2.48828618689559473000765149978, 4.00655023697578928558186970297, 5.19249724687226245866341991459, 5.79851079484728005820988072871, 6.82134128686700171432226389680, 7.68120528397975616350883588144, 8.762356129585901202480187659556, 9.673194548598037493507858276312, 9.917156854931533901493900220363

Graph of the $Z$-function along the critical line