L(s) = 1 | + 2.82·3-s − 1.41·5-s + 5.00·9-s + 11-s + 1.41·13-s − 4.00·15-s − 7.07·17-s + 2.82·19-s − 4·23-s − 2.99·25-s + 5.65·27-s − 5.65·31-s + 2.82·33-s − 8·37-s + 4.00·39-s − 9.89·41-s − 4·43-s − 7.07·45-s − 20.0·51-s − 6·53-s − 1.41·55-s + 8.00·57-s + 8.48·59-s + 1.41·61-s − 2.00·65-s + 8·67-s − 11.3·69-s + ⋯ |
L(s) = 1 | + 1.63·3-s − 0.632·5-s + 1.66·9-s + 0.301·11-s + 0.392·13-s − 1.03·15-s − 1.71·17-s + 0.648·19-s − 0.834·23-s − 0.599·25-s + 1.08·27-s − 1.01·31-s + 0.492·33-s − 1.31·37-s + 0.640·39-s − 1.54·41-s − 0.609·43-s − 1.05·45-s − 2.80·51-s − 0.824·53-s − 0.190·55-s + 1.05·57-s + 1.10·59-s + 0.181·61-s − 0.248·65-s + 0.977·67-s − 1.36·69-s + ⋯ |
Λ(s)=(=(8624s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8624s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 3 | 1−2.82T+3T2 |
| 5 | 1+1.41T+5T2 |
| 13 | 1−1.41T+13T2 |
| 17 | 1+7.07T+17T2 |
| 19 | 1−2.82T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+29T2 |
| 31 | 1+5.65T+31T2 |
| 37 | 1+8T+37T2 |
| 41 | 1+9.89T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1+47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1−8.48T+59T2 |
| 61 | 1−1.41T+61T2 |
| 67 | 1−8T+67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−1.41T+73T2 |
| 79 | 1+16T+79T2 |
| 83 | 1+2.82T+83T2 |
| 89 | 1−15.5T+89T2 |
| 97 | 1+9.89T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.46760761991361247988733304208, −7.04413911466501462583926811631, −6.26009793297953143686702153148, −5.17855580284254959492776254623, −4.29657086124467134879326308352, −3.70980917516283042942945851155, −3.23965352148593878850875245520, −2.18229187698172178580742072031, −1.64898519759039438656792173194, 0,
1.64898519759039438656792173194, 2.18229187698172178580742072031, 3.23965352148593878850875245520, 3.70980917516283042942945851155, 4.29657086124467134879326308352, 5.17855580284254959492776254623, 6.26009793297953143686702153148, 7.04413911466501462583926811631, 7.46760761991361247988733304208