Properties

Label 2-858-1.1-c5-0-92
Degree $2$
Conductor $858$
Sign $-1$
Analytic cond. $137.609$
Root an. cond. $11.7306$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 9·3-s + 16·4-s − 38·5-s + 36·6-s + 30·7-s + 64·8-s + 81·9-s − 152·10-s + 121·11-s + 144·12-s + 169·13-s + 120·14-s − 342·15-s + 256·16-s − 2.14e3·17-s + 324·18-s + 1.67e3·19-s − 608·20-s + 270·21-s + 484·22-s − 3.39e3·23-s + 576·24-s − 1.68e3·25-s + 676·26-s + 729·27-s + 480·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.679·5-s + 0.408·6-s + 0.231·7-s + 0.353·8-s + 1/3·9-s − 0.480·10-s + 0.301·11-s + 0.288·12-s + 0.277·13-s + 0.163·14-s − 0.392·15-s + 1/4·16-s − 1.80·17-s + 0.235·18-s + 1.06·19-s − 0.339·20-s + 0.133·21-s + 0.213·22-s − 1.33·23-s + 0.204·24-s − 0.537·25-s + 0.196·26-s + 0.192·27-s + 0.115·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(858\)    =    \(2 \cdot 3 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(137.609\)
Root analytic conductor: \(11.7306\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 858,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 - p^{2} T \)
11 \( 1 - p^{2} T \)
13 \( 1 - p^{2} T \)
good5 \( 1 + 38 T + p^{5} T^{2} \)
7 \( 1 - 30 T + p^{5} T^{2} \)
17 \( 1 + 2148 T + p^{5} T^{2} \)
19 \( 1 - 1674 T + p^{5} T^{2} \)
23 \( 1 + 3392 T + p^{5} T^{2} \)
29 \( 1 + 576 T + p^{5} T^{2} \)
31 \( 1 + 4304 T + p^{5} T^{2} \)
37 \( 1 + 4966 T + p^{5} T^{2} \)
41 \( 1 - 13768 T + p^{5} T^{2} \)
43 \( 1 + 12442 T + p^{5} T^{2} \)
47 \( 1 - 18872 T + p^{5} T^{2} \)
53 \( 1 + 11346 T + p^{5} T^{2} \)
59 \( 1 - 40732 T + p^{5} T^{2} \)
61 \( 1 + 1238 T + p^{5} T^{2} \)
67 \( 1 + 6028 T + p^{5} T^{2} \)
71 \( 1 + 22376 T + p^{5} T^{2} \)
73 \( 1 - 21206 T + p^{5} T^{2} \)
79 \( 1 + 53258 T + p^{5} T^{2} \)
83 \( 1 + 49232 T + p^{5} T^{2} \)
89 \( 1 - 112410 T + p^{5} T^{2} \)
97 \( 1 + 178978 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.904493442065763352576954025906, −8.057078413585270331964952185537, −7.30726863955350149563130259080, −6.44133678261306628870935697814, −5.36265391860032920055502079098, −4.21932634460832073464642303087, −3.77032651470179976062557189542, −2.56168911309104605068813934781, −1.57188540438823378863332053973, 0, 1.57188540438823378863332053973, 2.56168911309104605068813934781, 3.77032651470179976062557189542, 4.21932634460832073464642303087, 5.36265391860032920055502079098, 6.44133678261306628870935697814, 7.30726863955350149563130259080, 8.057078413585270331964952185537, 8.904493442065763352576954025906

Graph of the $Z$-function along the critical line