L(s) = 1 | + 2-s + 4-s + 5·7-s + 8-s + 4·11-s + 13-s + 5·14-s + 16-s − 3·17-s + 19-s + 4·22-s + 7·23-s + 26-s + 5·28-s + 3·29-s − 2·31-s + 32-s − 3·34-s + 2·37-s + 38-s + 6·41-s − 6·43-s + 4·44-s + 7·46-s + 18·49-s + 52-s − 13·53-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 1.88·7-s + 0.353·8-s + 1.20·11-s + 0.277·13-s + 1.33·14-s + 1/4·16-s − 0.727·17-s + 0.229·19-s + 0.852·22-s + 1.45·23-s + 0.196·26-s + 0.944·28-s + 0.557·29-s − 0.359·31-s + 0.176·32-s − 0.514·34-s + 0.328·37-s + 0.162·38-s + 0.937·41-s − 0.914·43-s + 0.603·44-s + 1.03·46-s + 18/7·49-s + 0.138·52-s − 1.78·53-s + ⋯ |
Λ(s)=(=(8550s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8550s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.136091102 |
L(21) |
≈ |
5.136091102 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 7 | 1−5T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+3T+pT2 |
| 23 | 1−7T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+13T+pT2 |
| 59 | 1−9T+pT2 |
| 61 | 1+12T+pT2 |
| 67 | 1−3T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1+2T+pT2 |
| 83 | 1+10T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.64412675368342072100402643347, −7.07704541117290869170938897697, −6.35430569173332358701577738897, −5.60181065616457415736945006525, −4.73764288830413259853760333013, −4.52726401175650390589229310145, −3.63706267746930921054569078234, −2.68059787783471348034578632155, −1.68490358819888880085777025199, −1.14285782158350026604192915140,
1.14285782158350026604192915140, 1.68490358819888880085777025199, 2.68059787783471348034578632155, 3.63706267746930921054569078234, 4.52726401175650390589229310145, 4.73764288830413259853760333013, 5.60181065616457415736945006525, 6.35430569173332358701577738897, 7.07704541117290869170938897697, 7.64412675368342072100402643347