Properties

Label 2-8550-1.1-c1-0-27
Degree $2$
Conductor $8550$
Sign $1$
Analytic cond. $68.2720$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4.22·7-s + 8-s + 5.13·11-s − 3.16·13-s − 4.22·14-s + 16-s − 6.48·17-s − 19-s + 5.13·22-s + 7.56·23-s − 3.16·26-s − 4.22·28-s − 0.832·29-s − 4.51·31-s + 32-s − 6.48·34-s − 0.137·37-s − 38-s + 11.6·41-s + 2.51·43-s + 5.13·44-s + 7.56·46-s − 5.96·47-s + 10.8·49-s − 3.16·52-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.59·7-s + 0.353·8-s + 1.54·11-s − 0.878·13-s − 1.12·14-s + 0.250·16-s − 1.57·17-s − 0.229·19-s + 1.09·22-s + 1.57·23-s − 0.621·26-s − 0.798·28-s − 0.154·29-s − 0.810·31-s + 0.176·32-s − 1.11·34-s − 0.0226·37-s − 0.162·38-s + 1.81·41-s + 0.382·43-s + 0.774·44-s + 1.11·46-s − 0.869·47-s + 1.55·49-s − 0.439·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(68.2720\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.441913258\)
\(L(\frac12)\) \(\approx\) \(2.441913258\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + 4.22T + 7T^{2} \)
11 \( 1 - 5.13T + 11T^{2} \)
13 \( 1 + 3.16T + 13T^{2} \)
17 \( 1 + 6.48T + 17T^{2} \)
23 \( 1 - 7.56T + 23T^{2} \)
29 \( 1 + 0.832T + 29T^{2} \)
31 \( 1 + 4.51T + 31T^{2} \)
37 \( 1 + 0.137T + 37T^{2} \)
41 \( 1 - 11.6T + 41T^{2} \)
43 \( 1 - 2.51T + 43T^{2} \)
47 \( 1 + 5.96T + 47T^{2} \)
53 \( 1 - 0.225T + 53T^{2} \)
59 \( 1 + 5.39T + 59T^{2} \)
61 \( 1 - 14.4T + 61T^{2} \)
67 \( 1 - 4.11T + 67T^{2} \)
71 \( 1 + 3.82T + 71T^{2} \)
73 \( 1 + 4.70T + 73T^{2} \)
79 \( 1 - 10.6T + 79T^{2} \)
83 \( 1 + 12.0T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 3.93T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.32099966240337576191712517378, −6.96605402924763937548298463606, −6.41540425603527620442676737521, −5.87756376913086678243832051690, −4.86142866212559333207919586867, −4.20519562391212201786812656703, −3.54173208619207850515771218072, −2.80944422190270651768728525085, −2.00711274011848064251231028654, −0.66202374538604611070695406826, 0.66202374538604611070695406826, 2.00711274011848064251231028654, 2.80944422190270651768728525085, 3.54173208619207850515771218072, 4.20519562391212201786812656703, 4.86142866212559333207919586867, 5.87756376913086678243832051690, 6.41540425603527620442676737521, 6.96605402924763937548298463606, 7.32099966240337576191712517378

Graph of the $Z$-function along the critical line