L(s) = 1 | + 2-s + 4-s − 4.22·7-s + 8-s + 5.13·11-s − 3.16·13-s − 4.22·14-s + 16-s − 6.48·17-s − 19-s + 5.13·22-s + 7.56·23-s − 3.16·26-s − 4.22·28-s − 0.832·29-s − 4.51·31-s + 32-s − 6.48·34-s − 0.137·37-s − 38-s + 11.6·41-s + 2.51·43-s + 5.13·44-s + 7.56·46-s − 5.96·47-s + 10.8·49-s − 3.16·52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.59·7-s + 0.353·8-s + 1.54·11-s − 0.878·13-s − 1.12·14-s + 0.250·16-s − 1.57·17-s − 0.229·19-s + 1.09·22-s + 1.57·23-s − 0.621·26-s − 0.798·28-s − 0.154·29-s − 0.810·31-s + 0.176·32-s − 1.11·34-s − 0.0226·37-s − 0.162·38-s + 1.81·41-s + 0.382·43-s + 0.774·44-s + 1.11·46-s − 0.869·47-s + 1.55·49-s − 0.439·52-s + ⋯ |
Λ(s)=(=(8550s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8550s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.441913258 |
L(21) |
≈ |
2.441913258 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 7 | 1+4.22T+7T2 |
| 11 | 1−5.13T+11T2 |
| 13 | 1+3.16T+13T2 |
| 17 | 1+6.48T+17T2 |
| 23 | 1−7.56T+23T2 |
| 29 | 1+0.832T+29T2 |
| 31 | 1+4.51T+31T2 |
| 37 | 1+0.137T+37T2 |
| 41 | 1−11.6T+41T2 |
| 43 | 1−2.51T+43T2 |
| 47 | 1+5.96T+47T2 |
| 53 | 1−0.225T+53T2 |
| 59 | 1+5.39T+59T2 |
| 61 | 1−14.4T+61T2 |
| 67 | 1−4.11T+67T2 |
| 71 | 1+3.82T+71T2 |
| 73 | 1+4.70T+73T2 |
| 79 | 1−10.6T+79T2 |
| 83 | 1+12.0T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+3.93T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.32099966240337576191712517378, −6.96605402924763937548298463606, −6.41540425603527620442676737521, −5.87756376913086678243832051690, −4.86142866212559333207919586867, −4.20519562391212201786812656703, −3.54173208619207850515771218072, −2.80944422190270651768728525085, −2.00711274011848064251231028654, −0.66202374538604611070695406826,
0.66202374538604611070695406826, 2.00711274011848064251231028654, 2.80944422190270651768728525085, 3.54173208619207850515771218072, 4.20519562391212201786812656703, 4.86142866212559333207919586867, 5.87756376913086678243832051690, 6.41540425603527620442676737521, 6.96605402924763937548298463606, 7.32099966240337576191712517378