Properties

Label 2-855-5.4-c1-0-29
Degree $2$
Conductor $855$
Sign $0.820 + 0.571i$
Analytic cond. $6.82720$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.70i·2-s − 0.903·4-s + (−1.83 − 1.27i)5-s − 0.338i·7-s + 1.86i·8-s + (2.17 − 3.12i)10-s − 1.26·11-s − 6.57i·13-s + 0.576·14-s − 4.99·16-s − 3.65i·17-s − 19-s + (1.65 + 1.15i)20-s − 2.14i·22-s − 5.14i·23-s + ⋯
L(s)  = 1  + 1.20i·2-s − 0.451·4-s + (−0.820 − 0.571i)5-s − 0.127i·7-s + 0.660i·8-s + (0.688 − 0.988i)10-s − 0.380·11-s − 1.82i·13-s + 0.154·14-s − 1.24·16-s − 0.887i·17-s − 0.229·19-s + (0.370 + 0.258i)20-s − 0.458i·22-s − 1.07i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.820 + 0.571i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.820 + 0.571i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(855\)    =    \(3^{2} \cdot 5 \cdot 19\)
Sign: $0.820 + 0.571i$
Analytic conductor: \(6.82720\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{855} (514, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 855,\ (\ :1/2),\ 0.820 + 0.571i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.839394 - 0.263497i\)
\(L(\frac12)\) \(\approx\) \(0.839394 - 0.263497i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (1.83 + 1.27i)T \)
19 \( 1 + T \)
good2 \( 1 - 1.70iT - 2T^{2} \)
7 \( 1 + 0.338iT - 7T^{2} \)
11 \( 1 + 1.26T + 11T^{2} \)
13 \( 1 + 6.57iT - 13T^{2} \)
17 \( 1 + 3.65iT - 17T^{2} \)
23 \( 1 + 5.14iT - 23T^{2} \)
29 \( 1 + 4.73T + 29T^{2} \)
31 \( 1 + 3.25T + 31T^{2} \)
37 \( 1 - 4.44iT - 37T^{2} \)
41 \( 1 - 4.93T + 41T^{2} \)
43 \( 1 + 9.32iT - 43T^{2} \)
47 \( 1 + 8.42iT - 47T^{2} \)
53 \( 1 + 6.98iT - 53T^{2} \)
59 \( 1 - 2.34T + 59T^{2} \)
61 \( 1 - 14.2T + 61T^{2} \)
67 \( 1 + 0.160iT - 67T^{2} \)
71 \( 1 + 0.160T + 71T^{2} \)
73 \( 1 - 5.07iT - 73T^{2} \)
79 \( 1 + 16.6T + 79T^{2} \)
83 \( 1 - 6.81iT - 83T^{2} \)
89 \( 1 + 16.3T + 89T^{2} \)
97 \( 1 - 13.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04383419604178040816580083601, −8.750626917917287296198677316823, −8.274542368130236049073030164222, −7.49446229387208559228250268289, −6.89609144890428453491535221463, −5.52845519766881621765078129622, −5.19181315801253850650202195475, −3.93629005660769089437542120368, −2.61444743923774402578148143393, −0.41881261991320426040993513060, 1.62199580226324057033006035322, 2.66834768524640797283160961611, 3.81961890652419412619883200494, 4.31984044298076593351723323024, 5.94748762891868390105496051198, 6.95356951386927737738948557211, 7.64438190369530883268991291704, 8.875101690855909627154781642424, 9.575133156982438846716772320388, 10.51344466022249064102587198599

Graph of the $Z$-function along the critical line