L(s) = 1 | + (1.20 + 2.09i)2-s + (−1.91 + 3.31i)4-s + (−0.5 − 0.866i)5-s − 3.82·7-s − 4.41·8-s + (1.20 − 2.09i)10-s − 2.82·11-s + (−1.91 + 3.31i)13-s + (−4.62 − 8.00i)14-s + (−1.49 − 2.59i)16-s + (−3.41 − 5.91i)17-s + (4 + 1.73i)19-s + 3.82·20-s + (−3.41 − 5.91i)22-s + (2.41 − 4.18i)23-s + ⋯ |
L(s) = 1 | + (0.853 + 1.47i)2-s + (−0.957 + 1.65i)4-s + (−0.223 − 0.387i)5-s − 1.44·7-s − 1.56·8-s + (0.381 − 0.661i)10-s − 0.852·11-s + (−0.530 + 0.919i)13-s + (−1.23 − 2.13i)14-s + (−0.374 − 0.649i)16-s + (−0.828 − 1.43i)17-s + (0.917 + 0.397i)19-s + 0.856·20-s + (−0.727 − 1.26i)22-s + (0.503 − 0.871i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.278820 - 0.307543i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.278820 - 0.307543i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-4 - 1.73i)T \) |
good | 2 | \( 1 + (-1.20 - 2.09i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + 3.82T + 7T^{2} \) |
| 11 | \( 1 + 2.82T + 11T^{2} \) |
| 13 | \( 1 + (1.91 - 3.31i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.41 + 5.91i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.41 + 4.18i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.828 - 1.43i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 5T + 31T^{2} \) |
| 37 | \( 1 + 7.82T + 37T^{2} \) |
| 41 | \( 1 + (1.41 + 2.44i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.08 + 1.88i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.41 - 7.64i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.15 - 12.3i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.74 + 9.94i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5 - 8.66i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.74 - 6.48i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.32 - 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8T + 83T^{2} \) |
| 89 | \( 1 + (2.24 - 3.88i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3 - 5.19i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77768192069703597719020214192, −9.529725391583880066031135354326, −9.046892409740634023086598909624, −7.933425913025809496941666197780, −6.98427089782899625206182493341, −6.72688556460919425717174805658, −5.47604792205812285833211971385, −4.89282408308823625802978593287, −3.83131101300964818251869368282, −2.77931632868215756296614681487,
0.14091225595846314830869586172, 2.05070944851746593685893097010, 3.25065695249925714829790988553, 3.47933169873033164158730829236, 4.91284907153272873165746223580, 5.71111025177151462283641598065, 6.78177968712170771112649359570, 7.85655746134008778644626033773, 9.194408617558616987773922792443, 9.949191021937475986026007195661