L(s) = 1 | + (1.20 + 2.09i)2-s + (−1.91 + 3.31i)4-s + (−0.5 − 0.866i)5-s − 3.82·7-s − 4.41·8-s + (1.20 − 2.09i)10-s − 2.82·11-s + (−1.91 + 3.31i)13-s + (−4.62 − 8.00i)14-s + (−1.49 − 2.59i)16-s + (−3.41 − 5.91i)17-s + (4 + 1.73i)19-s + 3.82·20-s + (−3.41 − 5.91i)22-s + (2.41 − 4.18i)23-s + ⋯ |
L(s) = 1 | + (0.853 + 1.47i)2-s + (−0.957 + 1.65i)4-s + (−0.223 − 0.387i)5-s − 1.44·7-s − 1.56·8-s + (0.381 − 0.661i)10-s − 0.852·11-s + (−0.530 + 0.919i)13-s + (−1.23 − 2.13i)14-s + (−0.374 − 0.649i)16-s + (−0.828 − 1.43i)17-s + (0.917 + 0.397i)19-s + 0.856·20-s + (−0.727 − 1.26i)22-s + (0.503 − 0.871i)23-s + ⋯ |
Λ(s)=(=(855s/2ΓC(s)L(s)(−0.0977+0.995i)Λ(2−s)
Λ(s)=(=(855s/2ΓC(s+1/2)L(s)(−0.0977+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
855
= 32⋅5⋅19
|
Sign: |
−0.0977+0.995i
|
Analytic conductor: |
6.82720 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ855(406,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 855, ( :1/2), −0.0977+0.995i)
|
Particular Values
L(1) |
≈ |
0.278820−0.307543i |
L(21) |
≈ |
0.278820−0.307543i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
| 19 | 1+(−4−1.73i)T |
good | 2 | 1+(−1.20−2.09i)T+(−1+1.73i)T2 |
| 7 | 1+3.82T+7T2 |
| 11 | 1+2.82T+11T2 |
| 13 | 1+(1.91−3.31i)T+(−6.5−11.2i)T2 |
| 17 | 1+(3.41+5.91i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−2.41+4.18i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.828−1.43i)T+(−14.5−25.1i)T2 |
| 31 | 1+5T+31T2 |
| 37 | 1+7.82T+37T2 |
| 41 | 1+(1.41+2.44i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.08+1.88i)T+(−21.5+37.2i)T2 |
| 47 | 1+(4.41−7.64i)T+(−23.5−40.7i)T2 |
| 53 | 1+(1−1.73i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(7.15−12.3i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−5.74+9.94i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−5−8.66i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−3.74−6.48i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−7.32−12.6i)T+(−39.5+68.4i)T2 |
| 83 | 1−8T+83T2 |
| 89 | 1+(2.24−3.88i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3−5.19i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77768192069703597719020214192, −9.529725391583880066031135354326, −9.046892409740634023086598909624, −7.933425913025809496941666197780, −6.98427089782899625206182493341, −6.72688556460919425717174805658, −5.47604792205812285833211971385, −4.89282408308823625802978593287, −3.83131101300964818251869368282, −2.77931632868215756296614681487,
0.14091225595846314830869586172, 2.05070944851746593685893097010, 3.25065695249925714829790988553, 3.47933169873033164158730829236, 4.91284907153272873165746223580, 5.71111025177151462283641598065, 6.78177968712170771112649359570, 7.85655746134008778644626033773, 9.194408617558616987773922792443, 9.949191021937475986026007195661