L(s) = 1 | − 1.79·3-s − 3·5-s + 7-s + 0.208·9-s − 0.791·11-s + 13-s + 5.37·15-s − 0.791·17-s − 19-s − 1.79·21-s − 4.58·23-s + 4·25-s + 5.00·27-s + 0.791·29-s − 6.37·31-s + 1.41·33-s − 3·35-s − 5·37-s − 1.79·39-s + 0.791·41-s − 2·43-s − 0.626·45-s + 1.41·47-s + 49-s + 1.41·51-s − 5.37·53-s + 2.37·55-s + ⋯ |
L(s) = 1 | − 1.03·3-s − 1.34·5-s + 0.377·7-s + 0.0695·9-s − 0.238·11-s + 0.277·13-s + 1.38·15-s − 0.191·17-s − 0.229·19-s − 0.390·21-s − 0.955·23-s + 0.800·25-s + 0.962·27-s + 0.146·29-s − 1.14·31-s + 0.246·33-s − 0.507·35-s − 0.821·37-s − 0.286·39-s + 0.123·41-s − 0.304·43-s − 0.0933·45-s + 0.206·47-s + 0.142·49-s + 0.198·51-s − 0.738·53-s + 0.320·55-s + ⋯ |
Λ(s)=(=(8512s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8512s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3569412492 |
L(21) |
≈ |
0.3569412492 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 3 | 1+1.79T+3T2 |
| 5 | 1+3T+5T2 |
| 11 | 1+0.791T+11T2 |
| 13 | 1−T+13T2 |
| 17 | 1+0.791T+17T2 |
| 23 | 1+4.58T+23T2 |
| 29 | 1−0.791T+29T2 |
| 31 | 1+6.37T+31T2 |
| 37 | 1+5T+37T2 |
| 41 | 1−0.791T+41T2 |
| 43 | 1+2T+43T2 |
| 47 | 1−1.41T+47T2 |
| 53 | 1+5.37T+53T2 |
| 59 | 1−6.16T+59T2 |
| 61 | 1−T+61T2 |
| 67 | 1+4.37T+67T2 |
| 71 | 1−6.16T+71T2 |
| 73 | 1−2.62T+73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1+0.626T+83T2 |
| 89 | 1+1.58T+89T2 |
| 97 | 1+7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.81504786353188156896870995315, −7.05238747727061286609432930959, −6.44792033160151507544490550853, −5.59535575758865086949932984598, −5.09808561188218344168370245259, −4.22431401813120300732534441531, −3.74797915081579832167505600651, −2.72725899636677242130270388364, −1.53534522516950022267575400039, −0.31281065433610855304088904117,
0.31281065433610855304088904117, 1.53534522516950022267575400039, 2.72725899636677242130270388364, 3.74797915081579832167505600651, 4.22431401813120300732534441531, 5.09808561188218344168370245259, 5.59535575758865086949932984598, 6.44792033160151507544490550853, 7.05238747727061286609432930959, 7.81504786353188156896870995315