L(s) = 1 | − i·2-s + (−2.15 − 2.15i)3-s − 4-s + (−2.15 + 2.15i)6-s + (−2.15 + 2.15i)7-s + i·8-s + 6.31i·9-s + (1 − i)11-s + (2.15 + 2.15i)12-s + 13-s + (2.15 + 2.15i)14-s + 16-s + (1 − 4i)17-s + 6.31·18-s + 8.31i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−1.24 − 1.24i)3-s − 0.5·4-s + (−0.881 + 0.881i)6-s + (−0.815 + 0.815i)7-s + 0.353i·8-s + 2.10i·9-s + (0.301 − 0.301i)11-s + (0.623 + 0.623i)12-s + 0.277·13-s + (0.576 + 0.576i)14-s + 0.250·16-s + (0.242 − 0.970i)17-s + 1.48·18-s + 1.90i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.651282 - 0.317779i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.651282 - 0.317779i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-1 + 4i)T \) |
good | 3 | \( 1 + (2.15 + 2.15i)T + 3iT^{2} \) |
| 7 | \( 1 + (2.15 - 2.15i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1 + i)T - 11iT^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 19 | \( 1 - 8.31iT - 19T^{2} \) |
| 23 | \( 1 + (-1 + i)T - 23iT^{2} \) |
| 29 | \( 1 + (2.31 + 2.31i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.15 - 3.15i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6.31 - 6.31i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.31 + 5.31i)T - 41iT^{2} \) |
| 43 | \( 1 + 6iT - 43T^{2} \) |
| 47 | \( 1 + 10.9T + 47T^{2} \) |
| 53 | \( 1 - 11.9iT - 53T^{2} \) |
| 59 | \( 1 + 4.63iT - 59T^{2} \) |
| 61 | \( 1 + (-5.31 + 5.31i)T - 61iT^{2} \) |
| 67 | \( 1 + 6.63T + 67T^{2} \) |
| 71 | \( 1 + (6.15 + 6.15i)T + 71iT^{2} \) |
| 73 | \( 1 + (-8.63 - 8.63i)T + 73iT^{2} \) |
| 79 | \( 1 + (-4.47 + 4.47i)T - 79iT^{2} \) |
| 83 | \( 1 - 12.6iT - 83T^{2} \) |
| 89 | \( 1 - 18.6T + 89T^{2} \) |
| 97 | \( 1 + (-2 - 2i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24369083525245923316796929465, −9.402367048632181107102742493863, −8.309848078418154724476909155974, −7.44033166284961412927115363477, −6.27173378500449047404268514757, −5.93393451558622080991847783171, −4.91405702872175874499322482777, −3.38635555081881603924759366896, −2.15283684173537381639826381212, −0.921258834982880779423658928219,
0.58361640129880188742599042866, 3.39429883558116195054339198829, 4.27770227063115703048012609911, 4.93529705532713038212415927376, 6.06798479523632449368685299690, 6.53580052835399288230122267044, 7.50255141866587921119106829767, 8.891837079704724511359799894465, 9.623232213751646464714979058747, 10.17215779723071837857357410974