Properties

Label 2-850-1.1-c3-0-60
Degree $2$
Conductor $850$
Sign $-1$
Analytic cond. $50.1516$
Root an. cond. $7.08178$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 4·4-s − 8·6-s + 4·7-s + 8·8-s − 11·9-s − 12·11-s − 16·12-s + 58·13-s + 8·14-s + 16·16-s − 17·17-s − 22·18-s − 52·19-s − 16·21-s − 24·22-s − 84·23-s − 32·24-s + 116·26-s + 152·27-s + 16·28-s − 246·29-s + 68·31-s + 32·32-s + 48·33-s − 34·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.769·3-s + 1/2·4-s − 0.544·6-s + 0.215·7-s + 0.353·8-s − 0.407·9-s − 0.328·11-s − 0.384·12-s + 1.23·13-s + 0.152·14-s + 1/4·16-s − 0.242·17-s − 0.288·18-s − 0.627·19-s − 0.166·21-s − 0.232·22-s − 0.761·23-s − 0.272·24-s + 0.874·26-s + 1.08·27-s + 0.107·28-s − 1.57·29-s + 0.393·31-s + 0.176·32-s + 0.253·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(50.1516\)
Root analytic conductor: \(7.08178\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 850,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 \)
17 \( 1 + p T \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
19 \( 1 + 52 T + p^{3} T^{2} \)
23 \( 1 + 84 T + p^{3} T^{2} \)
29 \( 1 + 246 T + p^{3} T^{2} \)
31 \( 1 - 68 T + p^{3} T^{2} \)
37 \( 1 - 358 T + p^{3} T^{2} \)
41 \( 1 + 78 T + p^{3} T^{2} \)
43 \( 1 - 412 T + p^{3} T^{2} \)
47 \( 1 + 408 T + p^{3} T^{2} \)
53 \( 1 + 750 T + p^{3} T^{2} \)
59 \( 1 + 420 T + p^{3} T^{2} \)
61 \( 1 + 190 T + p^{3} T^{2} \)
67 \( 1 + 596 T + p^{3} T^{2} \)
71 \( 1 - 324 T + p^{3} T^{2} \)
73 \( 1 + 1010 T + p^{3} T^{2} \)
79 \( 1 - 164 T + p^{3} T^{2} \)
83 \( 1 + 588 T + p^{3} T^{2} \)
89 \( 1 + 486 T + p^{3} T^{2} \)
97 \( 1 - 718 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.449420793849084899338315899574, −8.385976876651784947256139852562, −7.60367518022969037860989535103, −6.18620806235024070495678264655, −6.08286571968011613966188160740, −4.93989611663481390263539840334, −4.05946912593849336500733119523, −2.90494046951231390001272532003, −1.55946700605040616147598116556, 0, 1.55946700605040616147598116556, 2.90494046951231390001272532003, 4.05946912593849336500733119523, 4.93989611663481390263539840334, 6.08286571968011613966188160740, 6.18620806235024070495678264655, 7.60367518022969037860989535103, 8.385976876651784947256139852562, 9.449420793849084899338315899574

Graph of the $Z$-function along the critical line