Properties

Label 2-850-1.1-c3-0-53
Degree $2$
Conductor $850$
Sign $1$
Analytic cond. $50.1516$
Root an. cond. $7.08178$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 6.85·3-s + 4·4-s + 13.7·6-s + 30.5·7-s + 8·8-s + 19.9·9-s + 20.3·11-s + 27.4·12-s + 3.87·13-s + 61.1·14-s + 16·16-s + 17·17-s + 39.8·18-s − 34.2·19-s + 209.·21-s + 40.7·22-s − 52.6·23-s + 54.8·24-s + 7.75·26-s − 48.3·27-s + 122.·28-s + 295.·29-s − 226.·31-s + 32·32-s + 139.·33-s + 34·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.31·3-s + 0.5·4-s + 0.932·6-s + 1.65·7-s + 0.353·8-s + 0.738·9-s + 0.558·11-s + 0.659·12-s + 0.0827·13-s + 1.16·14-s + 0.250·16-s + 0.242·17-s + 0.522·18-s − 0.413·19-s + 2.17·21-s + 0.394·22-s − 0.477·23-s + 0.466·24-s + 0.0585·26-s − 0.344·27-s + 0.825·28-s + 1.89·29-s − 1.31·31-s + 0.176·32-s + 0.735·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(50.1516\)
Root analytic conductor: \(7.08178\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 850,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.555642638\)
\(L(\frac12)\) \(\approx\) \(6.555642638\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 \)
17 \( 1 - 17T \)
good3 \( 1 - 6.85T + 27T^{2} \)
7 \( 1 - 30.5T + 343T^{2} \)
11 \( 1 - 20.3T + 1.33e3T^{2} \)
13 \( 1 - 3.87T + 2.19e3T^{2} \)
19 \( 1 + 34.2T + 6.85e3T^{2} \)
23 \( 1 + 52.6T + 1.21e4T^{2} \)
29 \( 1 - 295.T + 2.43e4T^{2} \)
31 \( 1 + 226.T + 2.97e4T^{2} \)
37 \( 1 - 32.6T + 5.06e4T^{2} \)
41 \( 1 - 50.7T + 6.89e4T^{2} \)
43 \( 1 + 41.8T + 7.95e4T^{2} \)
47 \( 1 + 550.T + 1.03e5T^{2} \)
53 \( 1 + 163.T + 1.48e5T^{2} \)
59 \( 1 + 355.T + 2.05e5T^{2} \)
61 \( 1 - 49.1T + 2.26e5T^{2} \)
67 \( 1 - 795.T + 3.00e5T^{2} \)
71 \( 1 + 30.3T + 3.57e5T^{2} \)
73 \( 1 + 820.T + 3.89e5T^{2} \)
79 \( 1 - 1.05e3T + 4.93e5T^{2} \)
83 \( 1 + 572.T + 5.71e5T^{2} \)
89 \( 1 - 1.18e3T + 7.04e5T^{2} \)
97 \( 1 + 232.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.707057851689937103395541485571, −8.667404546650489469806827433138, −8.162751274485048616705370393824, −7.44140574857522521505593574406, −6.31539113938886245981656337158, −5.10220644683103940707349056638, −4.31262197967526786910824028434, −3.38477497926311057984733034887, −2.25690449250141518218407144494, −1.43681271850698791822868013528, 1.43681271850698791822868013528, 2.25690449250141518218407144494, 3.38477497926311057984733034887, 4.31262197967526786910824028434, 5.10220644683103940707349056638, 6.31539113938886245981656337158, 7.44140574857522521505593574406, 8.162751274485048616705370393824, 8.667404546650489469806827433138, 9.707057851689937103395541485571

Graph of the $Z$-function along the critical line