Properties

Label 2-850-1.1-c3-0-46
Degree $2$
Conductor $850$
Sign $-1$
Analytic cond. $50.1516$
Root an. cond. $7.08178$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 7.52·3-s + 4·4-s − 15.0·6-s − 14·7-s + 8·8-s + 29.5·9-s + 27.1·11-s − 30.0·12-s + 7.52·13-s − 28·14-s + 16·16-s − 17·17-s + 59.1·18-s − 43.7·19-s + 105.·21-s + 54.2·22-s + 88.4·23-s − 60.1·24-s + 15.0·26-s − 19.2·27-s − 56·28-s − 27.5·29-s + 197.·31-s + 32·32-s − 204·33-s − 34·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.44·3-s + 0.5·4-s − 1.02·6-s − 0.755·7-s + 0.353·8-s + 1.09·9-s + 0.743·11-s − 0.723·12-s + 0.160·13-s − 0.534·14-s + 0.250·16-s − 0.242·17-s + 0.774·18-s − 0.528·19-s + 1.09·21-s + 0.525·22-s + 0.801·23-s − 0.511·24-s + 0.113·26-s − 0.137·27-s − 0.377·28-s − 0.176·29-s + 1.14·31-s + 0.176·32-s − 1.07·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(50.1516\)
Root analytic conductor: \(7.08178\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 850,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 \)
17 \( 1 + 17T \)
good3 \( 1 + 7.52T + 27T^{2} \)
7 \( 1 + 14T + 343T^{2} \)
11 \( 1 - 27.1T + 1.33e3T^{2} \)
13 \( 1 - 7.52T + 2.19e3T^{2} \)
19 \( 1 + 43.7T + 6.85e3T^{2} \)
23 \( 1 - 88.4T + 1.21e4T^{2} \)
29 \( 1 + 27.5T + 2.43e4T^{2} \)
31 \( 1 - 197.T + 2.97e4T^{2} \)
37 \( 1 + 201.T + 5.06e4T^{2} \)
41 \( 1 - 184.T + 6.89e4T^{2} \)
43 \( 1 + 435.T + 7.95e4T^{2} \)
47 \( 1 - 309.T + 1.03e5T^{2} \)
53 \( 1 + 76.6T + 1.48e5T^{2} \)
59 \( 1 + 654.T + 2.05e5T^{2} \)
61 \( 1 + 179.T + 2.26e5T^{2} \)
67 \( 1 - 367.T + 3.00e5T^{2} \)
71 \( 1 + 473.T + 3.57e5T^{2} \)
73 \( 1 + 298.T + 3.89e5T^{2} \)
79 \( 1 + 993.T + 4.93e5T^{2} \)
83 \( 1 - 44.8T + 5.71e5T^{2} \)
89 \( 1 + 446.T + 7.04e5T^{2} \)
97 \( 1 + 1.53e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.626359701815715973885565235834, −8.552356006664275302987793859610, −7.12532360846178535310766040772, −6.50501406180447932305749053920, −5.93760950708865348050808081353, −4.97077689885692375074416503145, −4.14251964157091445753837664890, −2.97453971693808804441772439120, −1.34242855480123506717498122659, 0, 1.34242855480123506717498122659, 2.97453971693808804441772439120, 4.14251964157091445753837664890, 4.97077689885692375074416503145, 5.93760950708865348050808081353, 6.50501406180447932305749053920, 7.12532360846178535310766040772, 8.552356006664275302987793859610, 9.626359701815715973885565235834

Graph of the $Z$-function along the critical line