Properties

Label 2-850-1.1-c1-0-9
Degree $2$
Conductor $850$
Sign $-1$
Analytic cond. $6.78728$
Root an. cond. $2.60524$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2.41·3-s + 4-s + 2.41·6-s − 2.41·7-s − 8-s + 2.82·9-s + 2·11-s − 2.41·12-s + 4.65·13-s + 2.41·14-s + 16-s − 17-s − 2.82·18-s − 4.82·19-s + 5.82·21-s − 2·22-s + 3.65·23-s + 2.41·24-s − 4.65·26-s + 0.414·27-s − 2.41·28-s − 4·29-s + 4.41·31-s − 32-s − 4.82·33-s + 34-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.39·3-s + 0.5·4-s + 0.985·6-s − 0.912·7-s − 0.353·8-s + 0.942·9-s + 0.603·11-s − 0.696·12-s + 1.29·13-s + 0.645·14-s + 0.250·16-s − 0.242·17-s − 0.666·18-s − 1.10·19-s + 1.27·21-s − 0.426·22-s + 0.762·23-s + 0.492·24-s − 0.913·26-s + 0.0797·27-s − 0.456·28-s − 0.742·29-s + 0.792·31-s − 0.176·32-s − 0.840·33-s + 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(6.78728\)
Root analytic conductor: \(2.60524\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + 2.41T + 3T^{2} \)
7 \( 1 + 2.41T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 4.65T + 13T^{2} \)
19 \( 1 + 4.82T + 19T^{2} \)
23 \( 1 - 3.65T + 23T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 - 4.41T + 31T^{2} \)
37 \( 1 - 5.65T + 37T^{2} \)
41 \( 1 + 3.65T + 41T^{2} \)
43 \( 1 + 11.3T + 43T^{2} \)
47 \( 1 + 8.82T + 47T^{2} \)
53 \( 1 + 0.171T + 53T^{2} \)
59 \( 1 + 8T + 59T^{2} \)
61 \( 1 - 7.65T + 61T^{2} \)
67 \( 1 + 15.3T + 67T^{2} \)
71 \( 1 + 4.75T + 71T^{2} \)
73 \( 1 - 9.65T + 73T^{2} \)
79 \( 1 + 7.24T + 79T^{2} \)
83 \( 1 + 13.6T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.901214652818954849941453451721, −9.007050805938735906069297396817, −8.200218290014752007679683564767, −6.71832043111226579719029833115, −6.51131517699287499092528042702, −5.68529021066380826611335734900, −4.42536424171613716591100755623, −3.20317866091861749638702633526, −1.40866691395920224115338189443, 0, 1.40866691395920224115338189443, 3.20317866091861749638702633526, 4.42536424171613716591100755623, 5.68529021066380826611335734900, 6.51131517699287499092528042702, 6.71832043111226579719029833115, 8.200218290014752007679683564767, 9.007050805938735906069297396817, 9.901214652818954849941453451721

Graph of the $Z$-function along the critical line