L(s) = 1 | + 2-s + 0.484·3-s + 4-s + 0.484·6-s + 2.64·7-s + 8-s − 2.76·9-s + 2·11-s + 0.484·12-s + 0.484·13-s + 2.64·14-s + 16-s + 17-s − 2.76·18-s + 5.76·19-s + 1.28·21-s + 2·22-s − 1.35·23-s + 0.484·24-s + 0.484·26-s − 2.79·27-s + 2.64·28-s + 8.15·29-s − 2.09·31-s + 32-s + 0.969·33-s + 34-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.279·3-s + 0.5·4-s + 0.197·6-s + 0.997·7-s + 0.353·8-s − 0.921·9-s + 0.603·11-s + 0.139·12-s + 0.134·13-s + 0.705·14-s + 0.250·16-s + 0.242·17-s − 0.651·18-s + 1.32·19-s + 0.279·21-s + 0.426·22-s − 0.283·23-s + 0.0989·24-s + 0.0950·26-s − 0.537·27-s + 0.498·28-s + 1.51·29-s − 0.376·31-s + 0.176·32-s + 0.168·33-s + 0.171·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.887034437\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.887034437\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 - 0.484T + 3T^{2} \) |
| 7 | \( 1 - 2.64T + 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 - 0.484T + 13T^{2} \) |
| 19 | \( 1 - 5.76T + 19T^{2} \) |
| 23 | \( 1 + 1.35T + 23T^{2} \) |
| 29 | \( 1 - 8.15T + 29T^{2} \) |
| 31 | \( 1 + 2.09T + 31T^{2} \) |
| 37 | \( 1 + 11.1T + 37T^{2} \) |
| 41 | \( 1 + 0.249T + 41T^{2} \) |
| 43 | \( 1 - 1.03T + 43T^{2} \) |
| 47 | \( 1 - 6.01T + 47T^{2} \) |
| 53 | \( 1 + 7.70T + 53T^{2} \) |
| 59 | \( 1 - 8.73T + 59T^{2} \) |
| 61 | \( 1 + 11.3T + 61T^{2} \) |
| 67 | \( 1 + 4.96T + 67T^{2} \) |
| 71 | \( 1 - 8.34T + 71T^{2} \) |
| 73 | \( 1 - 0.484T + 73T^{2} \) |
| 79 | \( 1 - 9.85T + 79T^{2} \) |
| 83 | \( 1 + 17.5T + 83T^{2} \) |
| 89 | \( 1 + 8.73T + 89T^{2} \) |
| 97 | \( 1 - 6.73T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35643116251134270217574719421, −9.237970507245548289619569993741, −8.401358239565028659076800990824, −7.66419343355017763022389864076, −6.64748367636823236518808687930, −5.60068263002878327373607687112, −4.91832555855069752812199863503, −3.76408137680090359334695233843, −2.80372181376592729357582820062, −1.46438910881196037228705829046,
1.46438910881196037228705829046, 2.80372181376592729357582820062, 3.76408137680090359334695233843, 4.91832555855069752812199863503, 5.60068263002878327373607687112, 6.64748367636823236518808687930, 7.66419343355017763022389864076, 8.401358239565028659076800990824, 9.237970507245548289619569993741, 10.35643116251134270217574719421