Properties

Label 2-8450-1.1-c1-0-120
Degree $2$
Conductor $8450$
Sign $-1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.35·3-s + 4-s − 2.35·6-s − 4.49·7-s + 8-s + 2.55·9-s − 2.69·11-s − 2.35·12-s − 4.49·14-s + 16-s − 3.58·17-s + 2.55·18-s + 2.93·19-s + 10.5·21-s − 2.69·22-s + 6.09·23-s − 2.35·24-s + 1.04·27-s − 4.49·28-s + 2.98·29-s + 2.39·31-s + 32-s + 6.34·33-s − 3.58·34-s + 2.55·36-s − 1.50·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.36·3-s + 0.5·4-s − 0.962·6-s − 1.69·7-s + 0.353·8-s + 0.851·9-s − 0.811·11-s − 0.680·12-s − 1.20·14-s + 0.250·16-s − 0.868·17-s + 0.602·18-s + 0.674·19-s + 2.31·21-s − 0.573·22-s + 1.27·23-s − 0.481·24-s + 0.201·27-s − 0.849·28-s + 0.554·29-s + 0.430·31-s + 0.176·32-s + 1.10·33-s − 0.614·34-s + 0.425·36-s − 0.247·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2.35T + 3T^{2} \)
7 \( 1 + 4.49T + 7T^{2} \)
11 \( 1 + 2.69T + 11T^{2} \)
17 \( 1 + 3.58T + 17T^{2} \)
19 \( 1 - 2.93T + 19T^{2} \)
23 \( 1 - 6.09T + 23T^{2} \)
29 \( 1 - 2.98T + 29T^{2} \)
31 \( 1 - 2.39T + 31T^{2} \)
37 \( 1 + 1.50T + 37T^{2} \)
41 \( 1 - 3.65T + 41T^{2} \)
43 \( 1 + 0.170T + 43T^{2} \)
47 \( 1 - 5.20T + 47T^{2} \)
53 \( 1 + 6.09T + 53T^{2} \)
59 \( 1 + 3.07T + 59T^{2} \)
61 \( 1 + 13.9T + 61T^{2} \)
67 \( 1 - 11.0T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 - 10.9T + 73T^{2} \)
79 \( 1 - 2.81T + 79T^{2} \)
83 \( 1 - 2.93T + 83T^{2} \)
89 \( 1 + 12.1T + 89T^{2} \)
97 \( 1 - 12.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.03855913331863526800653200061, −6.51277994630628964276953137305, −6.15053939034626243765735233857, −5.29846128669169331576167364465, −4.91846899235010224905144715349, −3.97743452905997139928619336139, −3.08513742841735784961134948839, −2.53431299275718223173148661093, −0.973642549701648523028651052190, 0, 0.973642549701648523028651052190, 2.53431299275718223173148661093, 3.08513742841735784961134948839, 3.97743452905997139928619336139, 4.91846899235010224905144715349, 5.29846128669169331576167364465, 6.15053939034626243765735233857, 6.51277994630628964276953137305, 7.03855913331863526800653200061

Graph of the $Z$-function along the critical line