Properties

Label 2-8450-1.1-c1-0-113
Degree $2$
Conductor $8450$
Sign $-1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3.41·3-s + 4-s + 3.41·6-s + 0.459·7-s − 8-s + 8.66·9-s − 2.03·11-s − 3.41·12-s − 0.459·14-s + 16-s − 5.39·17-s − 8.66·18-s + 3.30·19-s − 1.57·21-s + 2.03·22-s + 4.15·23-s + 3.41·24-s − 19.3·27-s + 0.459·28-s + 6.05·29-s − 6.52·31-s − 32-s + 6.93·33-s + 5.39·34-s + 8.66·36-s + 8.07·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.97·3-s + 0.5·4-s + 1.39·6-s + 0.173·7-s − 0.353·8-s + 2.88·9-s − 0.612·11-s − 0.986·12-s − 0.122·14-s + 0.250·16-s − 1.30·17-s − 2.04·18-s + 0.758·19-s − 0.342·21-s + 0.432·22-s + 0.866·23-s + 0.697·24-s − 3.72·27-s + 0.0868·28-s + 1.12·29-s − 1.17·31-s − 0.176·32-s + 1.20·33-s + 0.924·34-s + 1.44·36-s + 1.32·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + 3.41T + 3T^{2} \)
7 \( 1 - 0.459T + 7T^{2} \)
11 \( 1 + 2.03T + 11T^{2} \)
17 \( 1 + 5.39T + 17T^{2} \)
19 \( 1 - 3.30T + 19T^{2} \)
23 \( 1 - 4.15T + 23T^{2} \)
29 \( 1 - 6.05T + 29T^{2} \)
31 \( 1 + 6.52T + 31T^{2} \)
37 \( 1 - 8.07T + 37T^{2} \)
41 \( 1 - 4.14T + 41T^{2} \)
43 \( 1 + 1.26T + 43T^{2} \)
47 \( 1 - 1.29T + 47T^{2} \)
53 \( 1 + 5.78T + 53T^{2} \)
59 \( 1 - 6.77T + 59T^{2} \)
61 \( 1 + 5.98T + 61T^{2} \)
67 \( 1 + 8.41T + 67T^{2} \)
71 \( 1 - 1.47T + 71T^{2} \)
73 \( 1 + 8.05T + 73T^{2} \)
79 \( 1 + 1.68T + 79T^{2} \)
83 \( 1 + 9.99T + 83T^{2} \)
89 \( 1 + 3.93T + 89T^{2} \)
97 \( 1 - 7.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.31994538223265138045178489178, −6.73233858437305922063722133413, −6.13141116317103838620395176653, −5.47634477005513653040936015717, −4.80057964702324227104530636271, −4.23939441508911075088934664866, −2.92950755669876126213875639904, −1.78894980190784538463257444149, −0.915363979736705688195134989701, 0, 0.915363979736705688195134989701, 1.78894980190784538463257444149, 2.92950755669876126213875639904, 4.23939441508911075088934664866, 4.80057964702324227104530636271, 5.47634477005513653040936015717, 6.13141116317103838620395176653, 6.73233858437305922063722133413, 7.31994538223265138045178489178

Graph of the $Z$-function along the critical line