Properties

Label 2-8450-1.1-c1-0-102
Degree $2$
Conductor $8450$
Sign $1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 0.219·3-s + 4-s − 0.219·6-s + 1.81·7-s + 8-s − 2.95·9-s + 4.42·11-s − 0.219·12-s + 1.81·14-s + 16-s + 6.15·17-s − 2.95·18-s − 6.70·19-s − 0.399·21-s + 4.42·22-s − 2.02·23-s − 0.219·24-s + 1.30·27-s + 1.81·28-s + 3.67·29-s + 7.90·31-s + 32-s − 0.971·33-s + 6.15·34-s − 2.95·36-s + 0.380·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.126·3-s + 0.5·4-s − 0.0896·6-s + 0.687·7-s + 0.353·8-s − 0.983·9-s + 1.33·11-s − 0.0634·12-s + 0.486·14-s + 0.250·16-s + 1.49·17-s − 0.695·18-s − 1.53·19-s − 0.0872·21-s + 0.942·22-s − 0.422·23-s − 0.0448·24-s + 0.251·27-s + 0.343·28-s + 0.682·29-s + 1.41·31-s + 0.176·32-s − 0.169·33-s + 1.05·34-s − 0.491·36-s + 0.0625·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.684628086\)
\(L(\frac12)\) \(\approx\) \(3.684628086\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + 0.219T + 3T^{2} \)
7 \( 1 - 1.81T + 7T^{2} \)
11 \( 1 - 4.42T + 11T^{2} \)
17 \( 1 - 6.15T + 17T^{2} \)
19 \( 1 + 6.70T + 19T^{2} \)
23 \( 1 + 2.02T + 23T^{2} \)
29 \( 1 - 3.67T + 29T^{2} \)
31 \( 1 - 7.90T + 31T^{2} \)
37 \( 1 - 0.380T + 37T^{2} \)
41 \( 1 + 7.27T + 41T^{2} \)
43 \( 1 + 0.648T + 43T^{2} \)
47 \( 1 - 8.57T + 47T^{2} \)
53 \( 1 - 7.03T + 53T^{2} \)
59 \( 1 - 5.42T + 59T^{2} \)
61 \( 1 - 6.01T + 61T^{2} \)
67 \( 1 + 4.00T + 67T^{2} \)
71 \( 1 - 1.31T + 71T^{2} \)
73 \( 1 + 8.07T + 73T^{2} \)
79 \( 1 + 16.3T + 79T^{2} \)
83 \( 1 + 0.575T + 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 + 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77793489286747363411301217767, −6.91845778532570061392141597027, −6.22969340328634627974902647554, −5.79857585119497561361257669908, −4.95140667308099652893522631714, −4.29543256649665444173591467166, −3.59530749205367561538667564849, −2.75715740550442499448302484461, −1.85033735885566829526689472822, −0.879423690162416218872493485239, 0.879423690162416218872493485239, 1.85033735885566829526689472822, 2.75715740550442499448302484461, 3.59530749205367561538667564849, 4.29543256649665444173591467166, 4.95140667308099652893522631714, 5.79857585119497561361257669908, 6.22969340328634627974902647554, 6.91845778532570061392141597027, 7.77793489286747363411301217767

Graph of the $Z$-function along the critical line