L(s) = 1 | − 2-s + (1 + i)3-s − 4-s + (1 + 2i)5-s + (−1 − i)6-s − 2i·7-s + 3·8-s − i·9-s + (−1 − 2i)10-s + (1 − i)11-s + (−1 − i)12-s + 2i·14-s + (−1 + 3i)15-s − 16-s + (1 + i)17-s + i·18-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.577 + 0.577i)3-s − 0.5·4-s + (0.447 + 0.894i)5-s + (−0.408 − 0.408i)6-s − 0.755i·7-s + 1.06·8-s − 0.333i·9-s + (−0.316 − 0.632i)10-s + (0.301 − 0.301i)11-s + (−0.288 − 0.288i)12-s + 0.534i·14-s + (−0.258 + 0.774i)15-s − 0.250·16-s + (0.242 + 0.242i)17-s + 0.235i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28332 + 0.131403i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28332 + 0.131403i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1 - 2i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + 2iT - 7T^{2} \) |
| 11 | \( 1 + (-1 + i)T - 11iT^{2} \) |
| 17 | \( 1 + (-1 - i)T + 17iT^{2} \) |
| 19 | \( 1 + (-5 + 5i)T - 19iT^{2} \) |
| 23 | \( 1 + (-3 + 3i)T - 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (5 + 5i)T + 31iT^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + (-7 - 7i)T + 41iT^{2} \) |
| 43 | \( 1 + (1 - i)T - 43iT^{2} \) |
| 47 | \( 1 - 6iT - 47T^{2} \) |
| 53 | \( 1 + (-5 - 5i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7 - 7i)T + 59iT^{2} \) |
| 61 | \( 1 + 14T + 61T^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (1 + i)T + 71iT^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 - 2iT - 79T^{2} \) |
| 83 | \( 1 + 6iT - 83T^{2} \) |
| 89 | \( 1 + (5 + 5i)T + 89iT^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.997695735296556593516238364177, −9.391333516584839524505667349951, −8.869807578067059749431236062820, −7.70508098683079452437475299650, −7.07648791172497236625123409406, −5.95641936729707310798056473999, −4.63319390685027673512157737634, −3.74485120437661299109604353213, −2.78812498195416515094628135212, −0.972144737925849040283467433381,
1.21084142230392679343381123098, 2.10953878103430875221379245190, 3.67179757851147163288609765016, 5.08139319533093154557660687378, 5.53830459405669053066837003804, 7.12013911552666554509174432922, 7.86393576383177772408631645189, 8.589892060628199988297932936725, 9.200243757568709178948787298780, 9.771603836877251884773775302253