L(s) = 1 | + (−0.427 + 0.246i)2-s + (0.908 + 0.243i)3-s + (−0.878 + 1.52i)4-s + (0.284 + 2.21i)5-s + (−0.448 + 0.120i)6-s + (−1.83 + 3.18i)7-s − 1.85i·8-s + (−1.83 − 1.05i)9-s + (−0.669 − 0.878i)10-s + (−0.664 − 0.177i)11-s + (−1.16 + 1.16i)12-s − 1.81i·14-s + (−0.281 + 2.08i)15-s + (−1.29 − 2.24i)16-s + (−0.614 − 2.29i)17-s + 1.04·18-s + ⋯ |
L(s) = 1 | + (−0.302 + 0.174i)2-s + (0.524 + 0.140i)3-s + (−0.439 + 0.760i)4-s + (0.127 + 0.991i)5-s + (−0.183 + 0.0490i)6-s + (−0.694 + 1.20i)7-s − 0.655i·8-s + (−0.610 − 0.352i)9-s + (−0.211 − 0.277i)10-s + (−0.200 − 0.0536i)11-s + (−0.337 + 0.337i)12-s − 0.485i·14-s + (−0.0726 + 0.538i)15-s + (−0.324 − 0.562i)16-s + (−0.149 − 0.556i)17-s + 0.246·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.905+0.424i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.905+0.424i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.905+0.424i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(427,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.905+0.424i)
|
Particular Values
L(1) |
≈ |
0.141785−0.636000i |
L(21) |
≈ |
0.141785−0.636000i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.284−2.21i)T |
| 13 | 1 |
good | 2 | 1+(0.427−0.246i)T+(1−1.73i)T2 |
| 3 | 1+(−0.908−0.243i)T+(2.59+1.5i)T2 |
| 7 | 1+(1.83−3.18i)T+(−3.5−6.06i)T2 |
| 11 | 1+(0.664+0.177i)T+(9.52+5.5i)T2 |
| 17 | 1+(0.614+2.29i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−1.41−5.29i)T+(−16.4+9.5i)T2 |
| 23 | 1+(0.350−1.30i)T+(−19.9−11.5i)T2 |
| 29 | 1+(−8.24+4.75i)T+(14.5−25.1i)T2 |
| 31 | 1+(4.81+4.81i)T+31iT2 |
| 37 | 1+(−0.917−1.58i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.143−0.534i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−2.09+0.560i)T+(37.2−21.5i)T2 |
| 47 | 1−3.80T+47T2 |
| 53 | 1+(2.47−2.47i)T−53iT2 |
| 59 | 1+(10.0−2.69i)T+(51.0−29.5i)T2 |
| 61 | 1+(3.09−5.36i)T+(−30.5−52.8i)T2 |
| 67 | 1+(10.6−6.12i)T+(33.5−58.0i)T2 |
| 71 | 1+(6.47−1.73i)T+(61.4−35.5i)T2 |
| 73 | 1−3.37iT−73T2 |
| 79 | 1−3.12iT−79T2 |
| 83 | 1+2.13T+83T2 |
| 89 | 1+(−0.874+3.26i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−6.12−3.53i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39599789848084727321701543312, −9.536892025614768893445639533023, −9.090568961835906240654095130431, −8.171388995562791192373802488120, −7.48541549843258920047192565774, −6.33122997704478630950608917603, −5.69727115956034935076832209417, −4.07214072444944193814729251169, −3.07016365568598367197415974624, −2.58818713210365071542160576364,
0.32614270682394806972251029428, 1.58526407203430459015873833937, 3.05366023045602494354423432102, 4.39481483342355958570986817301, 5.12145921713171550683598342011, 6.18551623522550468875229021520, 7.26929642963133938511034673000, 8.299694219515305493582904469230, 8.949416031443539489812368048587, 9.561676756081016220734361532054