L(s) = 1 | + (−0.237 + 0.137i)2-s + (−2.28 − 0.611i)3-s + (−0.962 + 1.66i)4-s + (−1.45 − 1.69i)5-s + (0.627 − 0.168i)6-s + (0.193 − 0.334i)7-s − 1.07i·8-s + (2.23 + 1.29i)9-s + (0.579 + 0.204i)10-s + (−4.21 − 1.12i)11-s + (3.21 − 3.21i)12-s + 0.106i·14-s + (2.27 + 4.76i)15-s + (−1.77 − 3.07i)16-s + (−0.510 − 1.90i)17-s − 0.710·18-s + ⋯ |
L(s) = 1 | + (−0.168 + 0.0971i)2-s + (−1.31 − 0.353i)3-s + (−0.481 + 0.833i)4-s + (−0.650 − 0.759i)5-s + (0.256 − 0.0686i)6-s + (0.0729 − 0.126i)7-s − 0.381i·8-s + (0.745 + 0.430i)9-s + (0.183 + 0.0646i)10-s + (−1.27 − 0.340i)11-s + (0.928 − 0.928i)12-s + 0.0283i·14-s + (0.588 + 1.23i)15-s + (−0.444 − 0.769i)16-s + (−0.123 − 0.462i)17-s − 0.167·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.524 - 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.524 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.254452 + 0.142169i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.254452 + 0.142169i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.45 + 1.69i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.237 - 0.137i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (2.28 + 0.611i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.193 + 0.334i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (4.21 + 1.12i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (0.510 + 1.90i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.29 + 4.83i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.0863 - 0.322i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (7.07 - 4.08i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.54 - 2.54i)T + 31iT^{2} \) |
| 37 | \( 1 + (-2.41 - 4.17i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.20 + 4.49i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-6.58 + 1.76i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 9.83T + 47T^{2} \) |
| 53 | \( 1 + (7.17 - 7.17i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.34 - 0.628i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (5.32 - 9.22i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.52 + 3.18i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.20 - 1.12i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 6.08iT - 73T^{2} \) |
| 79 | \( 1 + 3.34iT - 79T^{2} \) |
| 83 | \( 1 + 5.18T + 83T^{2} \) |
| 89 | \( 1 + (-1.29 + 4.82i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-12.7 - 7.37i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65244152577487062182714819317, −9.254941534997127239608870681345, −8.637886520383381355598555045723, −7.57034740651469986098820559455, −7.18955387632601074076856390338, −5.80943426819131381614536039882, −5.00231808125529356657678931733, −4.30238653434994078869048591137, −2.91275554058756118475190861909, −0.73880104053459999836669802110,
0.28939902591876292627098520729, 2.23418103201486542798163854047, 3.94911025052450711275673623281, 4.79423421993509313363342704532, 5.76657070983033901009771032426, 6.19957294469356536161134163646, 7.51231019763541148413928751738, 8.275803859376179084620414570607, 9.627167097014538101821854948820, 10.27320014481770606892643661250