L(s) = 1 | + (−0.237 + 0.137i)2-s + (−2.28 − 0.611i)3-s + (−0.962 + 1.66i)4-s + (−1.45 − 1.69i)5-s + (0.627 − 0.168i)6-s + (0.193 − 0.334i)7-s − 1.07i·8-s + (2.23 + 1.29i)9-s + (0.579 + 0.204i)10-s + (−4.21 − 1.12i)11-s + (3.21 − 3.21i)12-s + 0.106i·14-s + (2.27 + 4.76i)15-s + (−1.77 − 3.07i)16-s + (−0.510 − 1.90i)17-s − 0.710·18-s + ⋯ |
L(s) = 1 | + (−0.168 + 0.0971i)2-s + (−1.31 − 0.353i)3-s + (−0.481 + 0.833i)4-s + (−0.650 − 0.759i)5-s + (0.256 − 0.0686i)6-s + (0.0729 − 0.126i)7-s − 0.381i·8-s + (0.745 + 0.430i)9-s + (0.183 + 0.0646i)10-s + (−1.27 − 0.340i)11-s + (0.928 − 0.928i)12-s + 0.0283i·14-s + (0.588 + 1.23i)15-s + (−0.444 − 0.769i)16-s + (−0.123 − 0.462i)17-s − 0.167·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(0.524−0.851i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(0.524−0.851i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
0.524−0.851i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(427,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), 0.524−0.851i)
|
Particular Values
L(1) |
≈ |
0.254452+0.142169i |
L(21) |
≈ |
0.254452+0.142169i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.45+1.69i)T |
| 13 | 1 |
good | 2 | 1+(0.237−0.137i)T+(1−1.73i)T2 |
| 3 | 1+(2.28+0.611i)T+(2.59+1.5i)T2 |
| 7 | 1+(−0.193+0.334i)T+(−3.5−6.06i)T2 |
| 11 | 1+(4.21+1.12i)T+(9.52+5.5i)T2 |
| 17 | 1+(0.510+1.90i)T+(−14.7+8.5i)T2 |
| 19 | 1+(1.29+4.83i)T+(−16.4+9.5i)T2 |
| 23 | 1+(0.0863−0.322i)T+(−19.9−11.5i)T2 |
| 29 | 1+(7.07−4.08i)T+(14.5−25.1i)T2 |
| 31 | 1+(−2.54−2.54i)T+31iT2 |
| 37 | 1+(−2.41−4.17i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.20+4.49i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−6.58+1.76i)T+(37.2−21.5i)T2 |
| 47 | 1−9.83T+47T2 |
| 53 | 1+(7.17−7.17i)T−53iT2 |
| 59 | 1+(2.34−0.628i)T+(51.0−29.5i)T2 |
| 61 | 1+(5.32−9.22i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−5.52+3.18i)T+(33.5−58.0i)T2 |
| 71 | 1+(4.20−1.12i)T+(61.4−35.5i)T2 |
| 73 | 1−6.08iT−73T2 |
| 79 | 1+3.34iT−79T2 |
| 83 | 1+5.18T+83T2 |
| 89 | 1+(−1.29+4.82i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−12.7−7.37i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65244152577487062182714819317, −9.254941534997127239608870681345, −8.637886520383381355598555045723, −7.57034740651469986098820559455, −7.18955387632601074076856390338, −5.80943426819131381614536039882, −5.00231808125529356657678931733, −4.30238653434994078869048591137, −2.91275554058756118475190861909, −0.73880104053459999836669802110,
0.28939902591876292627098520729, 2.23418103201486542798163854047, 3.94911025052450711275673623281, 4.79423421993509313363342704532, 5.76657070983033901009771032426, 6.19957294469356536161134163646, 7.51231019763541148413928751738, 8.275803859376179084620414570607, 9.627167097014538101821854948820, 10.27320014481770606892643661250