| L(s) = 1 | + (−0.342 + 0.197i)2-s + (−2.36 + 1.36i)3-s + (−0.921 + 1.59i)4-s + (−1.15 + 1.91i)5-s + (0.540 − 0.936i)6-s + (0.545 + 0.314i)7-s − 1.51i·8-s + (2.24 − 3.88i)9-s + (0.0151 − 0.883i)10-s + (−2.74 − 4.76i)11-s − 5.04i·12-s − 0.248·14-s + (0.105 − 6.11i)15-s + (−1.54 − 2.67i)16-s + (3.68 + 2.12i)17-s + 1.77i·18-s + ⋯ |
| L(s) = 1 | + (−0.241 + 0.139i)2-s + (−1.36 + 0.789i)3-s + (−0.460 + 0.798i)4-s + (−0.514 + 0.857i)5-s + (0.220 − 0.382i)6-s + (0.206 + 0.118i)7-s − 0.536i·8-s + (0.748 − 1.29i)9-s + (0.00480 − 0.279i)10-s + (−0.828 − 1.43i)11-s − 1.45i·12-s − 0.0664·14-s + (0.0271 − 1.57i)15-s + (−0.385 − 0.668i)16-s + (0.893 + 0.515i)17-s + 0.417i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0571i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0571i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.344118 + 0.00984008i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.344118 + 0.00984008i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (1.15 - 1.91i)T \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (0.342 - 0.197i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (2.36 - 1.36i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.545 - 0.314i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.74 + 4.76i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.68 - 2.12i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.80 + 3.13i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.11 - 3.52i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.04 - 1.81i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.97T + 31T^{2} \) |
| 37 | \( 1 + (0.708 - 0.408i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.44 - 4.23i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (8.58 + 4.95i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2.29iT - 47T^{2} \) |
| 53 | \( 1 - 5.84iT - 53T^{2} \) |
| 59 | \( 1 + (-2.59 + 4.49i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.96 - 5.13i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.8 + 6.85i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.105 - 0.182i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 12.4iT - 73T^{2} \) |
| 79 | \( 1 - 7.19T + 79T^{2} \) |
| 83 | \( 1 + 6.61iT - 83T^{2} \) |
| 89 | \( 1 + (-1.83 - 3.17i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.93 + 2.27i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34472033880407874031449826156, −9.582992972463469624188853664681, −8.308947892454163485646150124396, −7.80374426588350437791341718535, −6.64037491850146155894811876029, −5.77195700613306053745510530805, −4.92174704805239577495894407717, −3.80293671790452844614484535961, −3.09980990568279263335980316848, −0.30952098084120458017451833240,
0.892199189783671986266758916275, 1.94653120501023771059287626935, 4.28427402204874780950950134769, 5.09233229172015671077486622101, 5.57703448049459129148701900899, 6.66564665145373503864640406209, 7.70036297472135023658305932505, 8.261332220161727164447742710741, 9.738595897563479837266122104429, 10.08220032227644128745192140638