L(s) = 1 | + (1.37 − 0.792i)2-s + (−0.0510 + 0.190i)3-s + (0.255 − 0.442i)4-s + (2.23 + 0.0672i)5-s + (0.0809 + 0.302i)6-s + (−0.274 + 0.474i)7-s + 2.35i·8-s + (2.56 + 1.48i)9-s + (3.12 − 1.67i)10-s + (0.0396 − 0.147i)11-s + (0.0713 + 0.0713i)12-s + 0.868i·14-s + (−0.126 + 0.422i)15-s + (2.38 + 4.12i)16-s + (−3.03 + 0.813i)17-s + 4.69·18-s + ⋯ |
L(s) = 1 | + (0.970 − 0.560i)2-s + (−0.0294 + 0.110i)3-s + (0.127 − 0.221i)4-s + (0.999 + 0.0300i)5-s + (0.0330 + 0.123i)6-s + (−0.103 + 0.179i)7-s + 0.834i·8-s + (0.854 + 0.493i)9-s + (0.986 − 0.530i)10-s + (0.0119 − 0.0446i)11-s + (0.0205 + 0.0205i)12-s + 0.232i·14-s + (−0.0327 + 0.109i)15-s + (0.595 + 1.03i)16-s + (−0.736 + 0.197i)17-s + 1.10·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.156i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.156i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.94897 + 0.231545i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.94897 + 0.231545i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.23 - 0.0672i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.37 + 0.792i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.0510 - 0.190i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (0.274 - 0.474i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.0396 + 0.147i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (3.03 - 0.813i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (4.40 - 1.18i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.41 - 0.916i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (2.02 - 1.17i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-6.60 + 6.60i)T - 31iT^{2} \) |
| 37 | \( 1 + (3.40 + 5.89i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.45 - 0.926i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (1.84 + 6.86i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 9.13T + 47T^{2} \) |
| 53 | \( 1 + (3.70 + 3.70i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.985 + 3.67i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (3.92 - 6.79i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.23 + 2.44i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.04 + 15.1i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 3.91iT - 73T^{2} \) |
| 79 | \( 1 + 11.1iT - 79T^{2} \) |
| 83 | \( 1 + 13.4T + 83T^{2} \) |
| 89 | \( 1 + (-8.78 - 2.35i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-6.55 - 3.78i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61506731167254663662601980635, −9.444178939021150104166061659990, −8.714875971083100195737748393279, −7.59582039962938718315204868751, −6.45587313036957912057017153516, −5.62234427335603430456528500327, −4.71294917191507755181049573882, −3.95849822837942982539647982324, −2.61122444756349376472768001558, −1.83253976670902487318384438658,
1.22455510612709162799641902281, 2.77498609390830597851609265557, 4.15464942146242399447594102623, 4.82062764923303978087094858902, 5.82346078002596773261416076253, 6.73623527416839077933245510500, 6.94872867994310899147990966016, 8.528491271192588476546170971656, 9.437406426790504805879771125767, 10.09997800301411522778980792414