Properties

Label 2-8410-1.1-c1-0-142
Degree $2$
Conductor $8410$
Sign $1$
Analytic cond. $67.1541$
Root an. cond. $8.19476$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.30·3-s + 4-s − 5-s + 1.30·6-s + 4.30·7-s + 8-s − 1.30·9-s − 10-s + 4.60·11-s + 1.30·12-s + 2.69·13-s + 4.30·14-s − 1.30·15-s + 16-s − 6.90·17-s − 1.30·18-s − 6.60·19-s − 20-s + 5.60·21-s + 4.60·22-s + 5.30·23-s + 1.30·24-s + 25-s + 2.69·26-s − 5.60·27-s + 4.30·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.752·3-s + 0.5·4-s − 0.447·5-s + 0.531·6-s + 1.62·7-s + 0.353·8-s − 0.434·9-s − 0.316·10-s + 1.38·11-s + 0.376·12-s + 0.748·13-s + 1.14·14-s − 0.336·15-s + 0.250·16-s − 1.67·17-s − 0.307·18-s − 1.51·19-s − 0.223·20-s + 1.22·21-s + 0.981·22-s + 1.10·23-s + 0.265·24-s + 0.200·25-s + 0.528·26-s − 1.07·27-s + 0.813·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8410\)    =    \(2 \cdot 5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(67.1541\)
Root analytic conductor: \(8.19476\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.253729084\)
\(L(\frac12)\) \(\approx\) \(5.253729084\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
29 \( 1 \)
good3 \( 1 - 1.30T + 3T^{2} \)
7 \( 1 - 4.30T + 7T^{2} \)
11 \( 1 - 4.60T + 11T^{2} \)
13 \( 1 - 2.69T + 13T^{2} \)
17 \( 1 + 6.90T + 17T^{2} \)
19 \( 1 + 6.60T + 19T^{2} \)
23 \( 1 - 5.30T + 23T^{2} \)
31 \( 1 + 2.90T + 31T^{2} \)
37 \( 1 - 11.8T + 37T^{2} \)
41 \( 1 - 1.39T + 41T^{2} \)
43 \( 1 - 0.302T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 6.90T + 53T^{2} \)
59 \( 1 - 9.90T + 59T^{2} \)
61 \( 1 - 13.9T + 61T^{2} \)
67 \( 1 - 5.21T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 15.5T + 73T^{2} \)
79 \( 1 + 5.90T + 79T^{2} \)
83 \( 1 + 1.39T + 83T^{2} \)
89 \( 1 - 7.39T + 89T^{2} \)
97 \( 1 + 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.946087302569203386375577102021, −6.97116943588337089919848680061, −6.52590171199042252092344474882, −5.63769972244831368508353896350, −4.79105686347036940360900821447, −4.02546382747371126030608468291, −3.90095564881006231238472919068, −2.54140616672556691719845360425, −2.05776961745747128379038626732, −1.02338165307282600962929892336, 1.02338165307282600962929892336, 2.05776961745747128379038626732, 2.54140616672556691719845360425, 3.90095564881006231238472919068, 4.02546382747371126030608468291, 4.79105686347036940360900821447, 5.63769972244831368508353896350, 6.52590171199042252092344474882, 6.97116943588337089919848680061, 7.946087302569203386375577102021

Graph of the $Z$-function along the critical line