Properties

Label 2-8410-1.1-c1-0-136
Degree $2$
Conductor $8410$
Sign $1$
Analytic cond. $67.1541$
Root an. cond. $8.19476$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.29·3-s + 4-s + 5-s + 1.29·6-s + 3.00·7-s + 8-s − 1.33·9-s + 10-s − 2.29·11-s + 1.29·12-s − 1.42·13-s + 3.00·14-s + 1.29·15-s + 16-s + 4.62·17-s − 1.33·18-s − 1.26·19-s + 20-s + 3.87·21-s − 2.29·22-s + 0.959·23-s + 1.29·24-s + 25-s − 1.42·26-s − 5.59·27-s + 3.00·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.744·3-s + 0.5·4-s + 0.447·5-s + 0.526·6-s + 1.13·7-s + 0.353·8-s − 0.445·9-s + 0.316·10-s − 0.692·11-s + 0.372·12-s − 0.395·13-s + 0.802·14-s + 0.333·15-s + 0.250·16-s + 1.12·17-s − 0.314·18-s − 0.291·19-s + 0.223·20-s + 0.845·21-s − 0.489·22-s + 0.200·23-s + 0.263·24-s + 0.200·25-s − 0.279·26-s − 1.07·27-s + 0.567·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8410\)    =    \(2 \cdot 5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(67.1541\)
Root analytic conductor: \(8.19476\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.351487329\)
\(L(\frac12)\) \(\approx\) \(5.351487329\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 \)
good3 \( 1 - 1.29T + 3T^{2} \)
7 \( 1 - 3.00T + 7T^{2} \)
11 \( 1 + 2.29T + 11T^{2} \)
13 \( 1 + 1.42T + 13T^{2} \)
17 \( 1 - 4.62T + 17T^{2} \)
19 \( 1 + 1.26T + 19T^{2} \)
23 \( 1 - 0.959T + 23T^{2} \)
31 \( 1 - 3.36T + 31T^{2} \)
37 \( 1 + 0.178T + 37T^{2} \)
41 \( 1 - 8.64T + 41T^{2} \)
43 \( 1 + 2.78T + 43T^{2} \)
47 \( 1 - 6.01T + 47T^{2} \)
53 \( 1 - 6.20T + 53T^{2} \)
59 \( 1 - 13.1T + 59T^{2} \)
61 \( 1 - 10.8T + 61T^{2} \)
67 \( 1 - 7.44T + 67T^{2} \)
71 \( 1 + 4.05T + 71T^{2} \)
73 \( 1 + 4.73T + 73T^{2} \)
79 \( 1 - 1.59T + 79T^{2} \)
83 \( 1 + 11.6T + 83T^{2} \)
89 \( 1 - 15.3T + 89T^{2} \)
97 \( 1 - 17.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74327099658873021569588765628, −7.29833929541314074020602346172, −6.25761388134413178105088345985, −5.46466692177250598368969478083, −5.15837232016109630432699778712, −4.25597415135228405274241627826, −3.45464148413428629895887303761, −2.54738555746432363253756187623, −2.18224730444433929184577406680, −1.00951386044746091984105672294, 1.00951386044746091984105672294, 2.18224730444433929184577406680, 2.54738555746432363253756187623, 3.45464148413428629895887303761, 4.25597415135228405274241627826, 5.15837232016109630432699778712, 5.46466692177250598368969478083, 6.25761388134413178105088345985, 7.29833929541314074020602346172, 7.74327099658873021569588765628

Graph of the $Z$-function along the critical line