Properties

Label 2-8410-1.1-c1-0-129
Degree $2$
Conductor $8410$
Sign $1$
Analytic cond. $67.1541$
Root an. cond. $8.19476$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.61·3-s + 4-s − 5-s − 2.61·6-s + 1.61·7-s − 8-s + 3.85·9-s + 10-s + 4.47·11-s + 2.61·12-s + 1.85·13-s − 1.61·14-s − 2.61·15-s + 16-s − 1.61·17-s − 3.85·18-s + 3.23·19-s − 20-s + 4.23·21-s − 4.47·22-s + 2.61·23-s − 2.61·24-s + 25-s − 1.85·26-s + 2.23·27-s + 1.61·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.51·3-s + 0.5·4-s − 0.447·5-s − 1.06·6-s + 0.611·7-s − 0.353·8-s + 1.28·9-s + 0.316·10-s + 1.34·11-s + 0.755·12-s + 0.514·13-s − 0.432·14-s − 0.675·15-s + 0.250·16-s − 0.392·17-s − 0.908·18-s + 0.742·19-s − 0.223·20-s + 0.924·21-s − 0.953·22-s + 0.545·23-s − 0.534·24-s + 0.200·25-s − 0.363·26-s + 0.430·27-s + 0.305·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8410\)    =    \(2 \cdot 5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(67.1541\)
Root analytic conductor: \(8.19476\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.209590001\)
\(L(\frac12)\) \(\approx\) \(3.209590001\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
29 \( 1 \)
good3 \( 1 - 2.61T + 3T^{2} \)
7 \( 1 - 1.61T + 7T^{2} \)
11 \( 1 - 4.47T + 11T^{2} \)
13 \( 1 - 1.85T + 13T^{2} \)
17 \( 1 + 1.61T + 17T^{2} \)
19 \( 1 - 3.23T + 19T^{2} \)
23 \( 1 - 2.61T + 23T^{2} \)
31 \( 1 - 0.854T + 31T^{2} \)
37 \( 1 - 2.47T + 37T^{2} \)
41 \( 1 - 7.23T + 41T^{2} \)
43 \( 1 + 11.3T + 43T^{2} \)
47 \( 1 - 9.70T + 47T^{2} \)
53 \( 1 + 2.38T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 3.09T + 61T^{2} \)
67 \( 1 - 13.7T + 67T^{2} \)
71 \( 1 + 16.4T + 71T^{2} \)
73 \( 1 + 3.14T + 73T^{2} \)
79 \( 1 - 0.145T + 79T^{2} \)
83 \( 1 - 12.9T + 83T^{2} \)
89 \( 1 + 11.2T + 89T^{2} \)
97 \( 1 - 5.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.010524807594593850657418476428, −7.31011409409926424058452793219, −6.79668217183013345467743909294, −5.91269913380362854631821728916, −4.78514009825110036677027608934, −3.97059671078500396056025895027, −3.42266393765781111276499060399, −2.60349215121403379257722330520, −1.70798692789326673227518689646, −0.983916242204349899688750483846, 0.983916242204349899688750483846, 1.70798692789326673227518689646, 2.60349215121403379257722330520, 3.42266393765781111276499060399, 3.97059671078500396056025895027, 4.78514009825110036677027608934, 5.91269913380362854631821728916, 6.79668217183013345467743909294, 7.31011409409926424058452793219, 8.010524807594593850657418476428

Graph of the $Z$-function along the critical line