| L(s)  = 1  |   + (−0.866 − 0.5i)2-s   + (0.866 − 0.5i)3-s   + (0.499 + 0.866i)4-s   + (−0.866 + 0.5i)5-s   − 0.999·6-s   + (−0.5 − 0.866i)7-s   − 0.999i·8-s   + (0.499 − 0.866i)9-s   + 0.999·10-s   + (−0.866 − 1.5i)11-s   + (0.866 + 0.499i)12-s     + 0.999i·14-s   + (−0.499 + 0.866i)15-s   + (−0.5 + 0.866i)16-s     + (−0.866 + 0.499i)18-s    + ⋯ | 
 
| L(s)  = 1  |   + (−0.866 − 0.5i)2-s   + (0.866 − 0.5i)3-s   + (0.499 + 0.866i)4-s   + (−0.866 + 0.5i)5-s   − 0.999·6-s   + (−0.5 − 0.866i)7-s   − 0.999i·8-s   + (0.499 − 0.866i)9-s   + 0.999·10-s   + (−0.866 − 1.5i)11-s   + (0.866 + 0.499i)12-s     + 0.999i·14-s   + (−0.499 + 0.866i)15-s   + (−0.5 + 0.866i)16-s     + (−0.866 + 0.499i)18-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(0.6428271796\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.6428271796\)  | 
    
    
        
      |  \(L(1)\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 + (0.866 + 0.5i)T \)  | 
 | 3 |  \( 1 + (-0.866 + 0.5i)T \)  | 
 | 5 |  \( 1 + (0.866 - 0.5i)T \)  | 
 | 7 |  \( 1 + (0.5 + 0.866i)T \)  | 
| good | 11 |  \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \)  | 
 | 13 |  \( 1 + T^{2} \)  | 
 | 17 |  \( 1 + (-0.5 + 0.866i)T^{2} \)  | 
 | 19 |  \( 1 + (0.5 + 0.866i)T^{2} \)  | 
 | 23 |  \( 1 + (-0.5 - 0.866i)T^{2} \)  | 
 | 29 |  \( 1 - 1.73T + T^{2} \)  | 
 | 31 |  \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)  | 
 | 37 |  \( 1 + (-0.5 - 0.866i)T^{2} \)  | 
 | 41 |  \( 1 - T^{2} \)  | 
 | 43 |  \( 1 + T^{2} \)  | 
 | 47 |  \( 1 + (-0.5 - 0.866i)T^{2} \)  | 
 | 53 |  \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)  | 
 | 59 |  \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \)  | 
 | 61 |  \( 1 + (0.5 + 0.866i)T^{2} \)  | 
 | 67 |  \( 1 + (-0.5 + 0.866i)T^{2} \)  | 
 | 71 |  \( 1 - T^{2} \)  | 
 | 73 |  \( 1 + (0.5 - 0.866i)T^{2} \)  | 
 | 79 |  \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)  | 
 | 83 |  \( 1 - iT - T^{2} \)  | 
 | 89 |  \( 1 + (0.5 + 0.866i)T^{2} \)  | 
 | 97 |  \( 1 - 1.73iT - T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.24990375266783894208143728593, −9.193024435960010970810667163703, −8.276855337427240096621370564326, −7.86189964280162824692180604220, −7.04570626348119670308580300052, −6.25516660109818317283211771018, −4.15956083774867056343353984795, −3.29630953780711754438619651704, −2.67895887576816873589101813255, −0.78080496692233655192936998471, 
2.00325116752297824852606799818, 3.09985963295911593686661986388, 4.62842248268027809634048145414, 5.22899022101729665070302856866, 6.72111745596697213266417962639, 7.53749228545587394862456934963, 8.293252034786180950949521422061, 8.853721284362381483867225216820, 9.734211731518223675409328245262, 10.22590914524953154160621070651