L(s) = 1 | + (0.5 + 0.866i)3-s + (0.5 − 0.866i)5-s + (0.5 + 2.59i)7-s + (−0.499 + 0.866i)9-s + (1 + 1.73i)11-s + 13-s + 0.999·15-s + (−1.5 + 2.59i)19-s + (−2 + 1.73i)21-s + (−0.499 − 0.866i)25-s − 0.999·27-s + (4.5 + 7.79i)31-s + (−0.999 + 1.73i)33-s + (2.5 + 0.866i)35-s + (−1.5 + 2.59i)37-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.223 − 0.387i)5-s + (0.188 + 0.981i)7-s + (−0.166 + 0.288i)9-s + (0.301 + 0.522i)11-s + 0.277·13-s + 0.258·15-s + (−0.344 + 0.596i)19-s + (−0.436 + 0.377i)21-s + (−0.0999 − 0.173i)25-s − 0.192·27-s + (0.808 + 1.39i)31-s + (−0.174 + 0.301i)33-s + (0.422 + 0.146i)35-s + (−0.246 + 0.427i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39708 + 1.06284i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39708 + 1.06284i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 2.59i)T \) |
good | 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 - 2.59i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (-4.5 - 7.79i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 - 3T + 43T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 + 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 14T + 71T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.5 - 7.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (-2 + 3.46i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22019709268751083827880716406, −9.489243705300167228768064932667, −8.697066346978432145602927002099, −8.166857960707656671828415245793, −6.88369522405238895798616362975, −5.85877863001689386543455020266, −5.03835967732958229763471344174, −4.10131931787088016906218726859, −2.85523675790088000862321344173, −1.67580106651439227980727865016,
0.885142405585729386763805918767, 2.33028915159604487607400849703, 3.52544644542460809925575638554, 4.47718690693141757921533501906, 5.86549428400945092516621285032, 6.64003396140062945729501312863, 7.45247148479265075617247747637, 8.218959868804291794708721684218, 9.165789394297621450535099405290, 10.03771158579814575814368364027