L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.793 + 2.09i)5-s + (2.38 + 1.13i)7-s − 1.00i·9-s + 1.83·11-s + (1.48 − 1.48i)13-s + (−0.917 − 2.03i)15-s + (4.65 + 4.65i)17-s − 3.78·19-s + (−2.49 + 0.885i)21-s + (0.980 + 0.980i)23-s + (−3.74 − 3.31i)25-s + (0.707 + 0.707i)27-s + 3.98i·29-s + 0.418i·31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−0.354 + 0.934i)5-s + (0.902 + 0.429i)7-s − 0.333i·9-s + 0.552·11-s + (0.412 − 0.412i)13-s + (−0.236 − 0.526i)15-s + (1.12 + 1.12i)17-s − 0.868·19-s + (−0.544 + 0.193i)21-s + (0.204 + 0.204i)23-s + (−0.748 − 0.663i)25-s + (0.136 + 0.136i)27-s + 0.740i·29-s + 0.0752i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.208 - 0.977i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.208 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.847028 + 1.04715i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.847028 + 1.04715i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.793 - 2.09i)T \) |
| 7 | \( 1 + (-2.38 - 1.13i)T \) |
good | 11 | \( 1 - 1.83T + 11T^{2} \) |
| 13 | \( 1 + (-1.48 + 1.48i)T - 13iT^{2} \) |
| 17 | \( 1 + (-4.65 - 4.65i)T + 17iT^{2} \) |
| 19 | \( 1 + 3.78T + 19T^{2} \) |
| 23 | \( 1 + (-0.980 - 0.980i)T + 23iT^{2} \) |
| 29 | \( 1 - 3.98iT - 29T^{2} \) |
| 31 | \( 1 - 0.418iT - 31T^{2} \) |
| 37 | \( 1 + (3.70 - 3.70i)T - 37iT^{2} \) |
| 41 | \( 1 - 10.3iT - 41T^{2} \) |
| 43 | \( 1 + (6.57 + 6.57i)T + 43iT^{2} \) |
| 47 | \( 1 + (5.32 + 5.32i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3.94 - 3.94i)T + 53iT^{2} \) |
| 59 | \( 1 + 7.45T + 59T^{2} \) |
| 61 | \( 1 - 9.97iT - 61T^{2} \) |
| 67 | \( 1 + (-5.40 + 5.40i)T - 67iT^{2} \) |
| 71 | \( 1 - 12.5T + 71T^{2} \) |
| 73 | \( 1 + (-5.08 + 5.08i)T - 73iT^{2} \) |
| 79 | \( 1 - 6.33iT - 79T^{2} \) |
| 83 | \( 1 + (5.50 - 5.50i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.27T + 89T^{2} \) |
| 97 | \( 1 + (-2.50 - 2.50i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58141082241416604730066512389, −9.831413440970381210650267893113, −8.567709612317100759038670367364, −8.049877783716741761788346675542, −6.88915616973668576528025365560, −6.07869002671880454687308926841, −5.17854361157875835249514873471, −4.03310649130606049038297620124, −3.17185812407836332191387231652, −1.60405075349851877930639908876,
0.75934827117409413179682517513, 1.87246973057683678979650876805, 3.72276408381544431717323923330, 4.67500995456468528611132917321, 5.39645788734980787944862146525, 6.54153342125752910405697815471, 7.50089402351074665104343342515, 8.192307907789448744865730406127, 8.998579700784122933719399002905, 9.941556933849841029996981739865