L(s) = 1 | + (−1.41 + 0.0812i)2-s + (−0.258 + 0.965i)3-s + (1.98 − 0.229i)4-s + (1.69 − 1.46i)5-s + (0.286 − 1.38i)6-s + (2.19 + 1.48i)7-s + (−2.78 + 0.485i)8-s + (−0.866 − 0.499i)9-s + (−2.26 + 2.20i)10-s + (−2.78 − 4.82i)11-s + (−0.292 + 1.97i)12-s + (4.22 − 4.22i)13-s + (−3.21 − 1.91i)14-s + (0.976 + 2.01i)15-s + (3.89 − 0.911i)16-s + (0.357 + 0.0957i)17-s + ⋯ |
L(s) = 1 | + (−0.998 + 0.0574i)2-s + (−0.149 + 0.557i)3-s + (0.993 − 0.114i)4-s + (0.755 − 0.654i)5-s + (0.117 − 0.565i)6-s + (0.827 + 0.560i)7-s + (−0.985 + 0.171i)8-s + (−0.288 − 0.166i)9-s + (−0.717 + 0.696i)10-s + (−0.839 − 1.45i)11-s + (−0.0845 + 0.571i)12-s + (1.17 − 1.17i)13-s + (−0.858 − 0.512i)14-s + (0.252 + 0.519i)15-s + (0.973 − 0.227i)16-s + (0.0866 + 0.0232i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.552 + 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.906330 - 0.486360i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.906330 - 0.486360i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 - 0.0812i)T \) |
| 3 | \( 1 + (0.258 - 0.965i)T \) |
| 5 | \( 1 + (-1.69 + 1.46i)T \) |
| 7 | \( 1 + (-2.19 - 1.48i)T \) |
good | 11 | \( 1 + (2.78 + 4.82i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.22 + 4.22i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.357 - 0.0957i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (3.88 + 2.24i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.37 + 5.12i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 2.15T + 29T^{2} \) |
| 31 | \( 1 + (7.57 - 4.37i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.48 - 0.398i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 6.48T + 41T^{2} \) |
| 43 | \( 1 + (4.80 + 4.80i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.25 + 0.335i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-1.73 - 0.463i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (2.91 - 1.68i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.74 - 5.62i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-13.9 - 3.73i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 10.8iT - 71T^{2} \) |
| 73 | \( 1 + (-1.90 + 7.09i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (0.655 - 1.13i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.80 - 6.80i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.23 - 1.86i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.31 + 5.31i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27395609205690307400900839765, −8.842911441636714754320454762053, −8.635403187034652784320009957653, −8.053423465085794974446483916782, −6.44053605974821364707808114615, −5.66390510068653876002654703541, −5.11389520142842258031604232772, −3.36000095250507913571448155585, −2.18168067106757539336596466904, −0.70177870275054937608129869641,
1.68797066897270994830000294537, 2.06702109796601219534498174538, 3.76669823704583595578344942570, 5.27236124150743455116773008453, 6.36037272306638265629986981932, 7.03597463964970334812423659659, 7.72214658689649379865641188169, 8.574934119294438371888158423225, 9.648390777306442695071746264754, 10.25464777920168344101775224402