L(s) = 1 | + (−0.752 − 1.19i)2-s + 3-s + (−0.867 + 1.80i)4-s + (1.64 + 1.51i)5-s + (−0.752 − 1.19i)6-s + (2.63 − 0.259i)7-s + (2.81 − 0.318i)8-s + 9-s + (0.571 − 3.11i)10-s − 3.15·11-s + (−0.867 + 1.80i)12-s − 2.42i·13-s + (−2.29 − 2.95i)14-s + (1.64 + 1.51i)15-s + (−2.49 − 3.12i)16-s + 2.13·17-s + ⋯ |
L(s) = 1 | + (−0.532 − 0.846i)2-s + 0.577·3-s + (−0.433 + 0.901i)4-s + (0.736 + 0.676i)5-s + (−0.307 − 0.488i)6-s + (0.995 − 0.0980i)7-s + (0.993 − 0.112i)8-s + 0.333·9-s + (0.180 − 0.983i)10-s − 0.952·11-s + (−0.250 + 0.520i)12-s − 0.673i·13-s + (−0.612 − 0.790i)14-s + (0.425 + 0.390i)15-s + (−0.623 − 0.781i)16-s + 0.517·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.861 + 0.507i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.861 + 0.507i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69432 - 0.461594i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69432 - 0.461594i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.752 + 1.19i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-1.64 - 1.51i)T \) |
| 7 | \( 1 + (-2.63 + 0.259i)T \) |
good | 11 | \( 1 + 3.15T + 11T^{2} \) |
| 13 | \( 1 + 2.42iT - 13T^{2} \) |
| 17 | \( 1 - 2.13T + 17T^{2} \) |
| 19 | \( 1 + 2.84iT - 19T^{2} \) |
| 23 | \( 1 - 7.13T + 23T^{2} \) |
| 29 | \( 1 - 4.57iT - 29T^{2} \) |
| 31 | \( 1 + 3.50T + 31T^{2} \) |
| 37 | \( 1 - 7.05T + 37T^{2} \) |
| 41 | \( 1 - 2.43iT - 41T^{2} \) |
| 43 | \( 1 + 5.07iT - 43T^{2} \) |
| 47 | \( 1 - 12.8iT - 47T^{2} \) |
| 53 | \( 1 - 4.91T + 53T^{2} \) |
| 59 | \( 1 + 2.93iT - 59T^{2} \) |
| 61 | \( 1 + 1.17T + 61T^{2} \) |
| 67 | \( 1 + 5.88iT - 67T^{2} \) |
| 71 | \( 1 - 5.30iT - 71T^{2} \) |
| 73 | \( 1 + 13.0T + 73T^{2} \) |
| 79 | \( 1 + 4.53iT - 79T^{2} \) |
| 83 | \( 1 + 14.0T + 83T^{2} \) |
| 89 | \( 1 + 4.75iT - 89T^{2} \) |
| 97 | \( 1 - 10.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24496935307986865746963333507, −9.356274540638160580366597018579, −8.599845306805222497827669197786, −7.67685178629659704908123602544, −7.15393938385361605686895981111, −5.52551199170563816387972636343, −4.63253269001727770967914260791, −3.16462193395160669094902364565, −2.56300339240086238097863792876, −1.32158507996242605339852719216,
1.24874125266203318935684414165, 2.33930119347875176785468373755, 4.27151437248069034111844800695, 5.15381178227680265847607455103, 5.80152873540413593478071339011, 7.06179743632334509051035092680, 7.88785177610908979406990703572, 8.529831722443634645154093890904, 9.219820678848225146296169706566, 10.00202415392566848175284338897