Properties

Label 2-840-1.1-c3-0-35
Degree $2$
Conductor $840$
Sign $-1$
Analytic cond. $49.5616$
Root an. cond. $7.04000$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s + 7·7-s + 9·9-s − 16·11-s − 62·13-s + 15·15-s − 14·17-s − 56·19-s + 21·21-s − 136·23-s + 25·25-s + 27·27-s − 154·29-s − 116·31-s − 48·33-s + 35·35-s + 6·37-s − 186·39-s − 150·41-s − 20·43-s + 45·45-s + 152·47-s + 49·49-s − 42·51-s − 78·53-s − 80·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.438·11-s − 1.32·13-s + 0.258·15-s − 0.199·17-s − 0.676·19-s + 0.218·21-s − 1.23·23-s + 1/5·25-s + 0.192·27-s − 0.986·29-s − 0.672·31-s − 0.253·33-s + 0.169·35-s + 0.0266·37-s − 0.763·39-s − 0.571·41-s − 0.0709·43-s + 0.149·45-s + 0.471·47-s + 1/7·49-s − 0.115·51-s − 0.202·53-s − 0.196·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(49.5616\)
Root analytic conductor: \(7.04000\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 840,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 - p T \)
7 \( 1 - p T \)
good11 \( 1 + 16 T + p^{3} T^{2} \)
13 \( 1 + 62 T + p^{3} T^{2} \)
17 \( 1 + 14 T + p^{3} T^{2} \)
19 \( 1 + 56 T + p^{3} T^{2} \)
23 \( 1 + 136 T + p^{3} T^{2} \)
29 \( 1 + 154 T + p^{3} T^{2} \)
31 \( 1 + 116 T + p^{3} T^{2} \)
37 \( 1 - 6 T + p^{3} T^{2} \)
41 \( 1 + 150 T + p^{3} T^{2} \)
43 \( 1 + 20 T + p^{3} T^{2} \)
47 \( 1 - 152 T + p^{3} T^{2} \)
53 \( 1 + 78 T + p^{3} T^{2} \)
59 \( 1 - 124 T + p^{3} T^{2} \)
61 \( 1 - 166 T + p^{3} T^{2} \)
67 \( 1 - 140 T + p^{3} T^{2} \)
71 \( 1 - 204 T + p^{3} T^{2} \)
73 \( 1 + 210 T + p^{3} T^{2} \)
79 \( 1 + 984 T + p^{3} T^{2} \)
83 \( 1 - 628 T + p^{3} T^{2} \)
89 \( 1 - 138 T + p^{3} T^{2} \)
97 \( 1 + 1202 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.456095483391263262927704748981, −8.526885133973501133856676423918, −7.72935331089389011512398398152, −6.96529627884696128397750308924, −5.79646238204255330851246926186, −4.89233999259312195463179345264, −3.88835788122713943850386442478, −2.55160390999829507558173901281, −1.82637947571073249982237504707, 0, 1.82637947571073249982237504707, 2.55160390999829507558173901281, 3.88835788122713943850386442478, 4.89233999259312195463179345264, 5.79646238204255330851246926186, 6.96529627884696128397750308924, 7.72935331089389011512398398152, 8.526885133973501133856676423918, 9.456095483391263262927704748981

Graph of the $Z$-function along the critical line