Properties

Label 2-840-1.1-c3-0-34
Degree $2$
Conductor $840$
Sign $-1$
Analytic cond. $49.5616$
Root an. cond. $7.04000$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s − 7·7-s + 9·9-s + 22·11-s − 44·13-s + 15·15-s − 110·17-s − 22·19-s − 21·21-s − 36·23-s + 25·25-s + 27·27-s − 122·29-s − 186·31-s + 66·33-s − 35·35-s + 306·37-s − 132·39-s − 330·41-s + 20·43-s + 45·45-s − 64·47-s + 49·49-s − 330·51-s + 504·53-s + 110·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.603·11-s − 0.938·13-s + 0.258·15-s − 1.56·17-s − 0.265·19-s − 0.218·21-s − 0.326·23-s + 1/5·25-s + 0.192·27-s − 0.781·29-s − 1.07·31-s + 0.348·33-s − 0.169·35-s + 1.35·37-s − 0.541·39-s − 1.25·41-s + 0.0709·43-s + 0.149·45-s − 0.198·47-s + 1/7·49-s − 0.906·51-s + 1.30·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(49.5616\)
Root analytic conductor: \(7.04000\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 840,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 - p T \)
7 \( 1 + p T \)
good11 \( 1 - 2 p T + p^{3} T^{2} \)
13 \( 1 + 44 T + p^{3} T^{2} \)
17 \( 1 + 110 T + p^{3} T^{2} \)
19 \( 1 + 22 T + p^{3} T^{2} \)
23 \( 1 + 36 T + p^{3} T^{2} \)
29 \( 1 + 122 T + p^{3} T^{2} \)
31 \( 1 + 6 p T + p^{3} T^{2} \)
37 \( 1 - 306 T + p^{3} T^{2} \)
41 \( 1 + 330 T + p^{3} T^{2} \)
43 \( 1 - 20 T + p^{3} T^{2} \)
47 \( 1 + 64 T + p^{3} T^{2} \)
53 \( 1 - 504 T + p^{3} T^{2} \)
59 \( 1 + 560 T + p^{3} T^{2} \)
61 \( 1 + 418 T + p^{3} T^{2} \)
67 \( 1 + 452 T + p^{3} T^{2} \)
71 \( 1 + 146 T + p^{3} T^{2} \)
73 \( 1 + 236 T + p^{3} T^{2} \)
79 \( 1 - 536 T + p^{3} T^{2} \)
83 \( 1 + 92 T + p^{3} T^{2} \)
89 \( 1 + 574 T + p^{3} T^{2} \)
97 \( 1 - 184 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.280006060389995086821092815219, −8.805565892310133215201807635645, −7.62471405727836087989529968364, −6.83827543716163066507640561175, −6.00472364433681541136988791645, −4.77922430864433375372275550165, −3.87062882138216773831928685756, −2.64735697558271889589125359580, −1.75869645659215497190647513550, 0, 1.75869645659215497190647513550, 2.64735697558271889589125359580, 3.87062882138216773831928685756, 4.77922430864433375372275550165, 6.00472364433681541136988791645, 6.83827543716163066507640561175, 7.62471405727836087989529968364, 8.805565892310133215201807635645, 9.280006060389995086821092815219

Graph of the $Z$-function along the critical line