Properties

Label 2-840-1.1-c3-0-33
Degree $2$
Conductor $840$
Sign $-1$
Analytic cond. $49.5616$
Root an. cond. $7.04000$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s − 7·7-s + 9·9-s − 44·11-s + 22·13-s + 15·15-s + 66·17-s − 132·19-s − 21·21-s − 168·23-s + 25·25-s + 27·27-s + 54·29-s + 144·31-s − 132·33-s − 35·35-s − 354·37-s + 66·39-s − 22·41-s − 156·43-s + 45·45-s − 240·47-s + 49·49-s + 198·51-s − 354·53-s − 220·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.20·11-s + 0.469·13-s + 0.258·15-s + 0.941·17-s − 1.59·19-s − 0.218·21-s − 1.52·23-s + 1/5·25-s + 0.192·27-s + 0.345·29-s + 0.834·31-s − 0.696·33-s − 0.169·35-s − 1.57·37-s + 0.270·39-s − 0.0838·41-s − 0.553·43-s + 0.149·45-s − 0.744·47-s + 1/7·49-s + 0.543·51-s − 0.917·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(49.5616\)
Root analytic conductor: \(7.04000\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 840,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 - p T \)
7 \( 1 + p T \)
good11 \( 1 + 4 p T + p^{3} T^{2} \)
13 \( 1 - 22 T + p^{3} T^{2} \)
17 \( 1 - 66 T + p^{3} T^{2} \)
19 \( 1 + 132 T + p^{3} T^{2} \)
23 \( 1 + 168 T + p^{3} T^{2} \)
29 \( 1 - 54 T + p^{3} T^{2} \)
31 \( 1 - 144 T + p^{3} T^{2} \)
37 \( 1 + 354 T + p^{3} T^{2} \)
41 \( 1 + 22 T + p^{3} T^{2} \)
43 \( 1 + 156 T + p^{3} T^{2} \)
47 \( 1 + 240 T + p^{3} T^{2} \)
53 \( 1 + 354 T + p^{3} T^{2} \)
59 \( 1 + 76 T + p^{3} T^{2} \)
61 \( 1 + 154 T + p^{3} T^{2} \)
67 \( 1 + 628 T + p^{3} T^{2} \)
71 \( 1 - 8 T + p^{3} T^{2} \)
73 \( 1 - 1018 T + p^{3} T^{2} \)
79 \( 1 - 96 T + p^{3} T^{2} \)
83 \( 1 - 348 T + p^{3} T^{2} \)
89 \( 1 - 218 T + p^{3} T^{2} \)
97 \( 1 + 1598 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.463112204626031341325014868354, −8.352223059285472737363868070695, −7.990451343038805971525958490289, −6.72663066865084324026620794103, −5.95208239355464202701394914454, −4.90732816925327008681566393021, −3.74483114097115153235936848994, −2.73242483884150337773736941940, −1.72300840079941920792412613461, 0, 1.72300840079941920792412613461, 2.73242483884150337773736941940, 3.74483114097115153235936848994, 4.90732816925327008681566393021, 5.95208239355464202701394914454, 6.72663066865084324026620794103, 7.990451343038805971525958490289, 8.352223059285472737363868070695, 9.463112204626031341325014868354

Graph of the $Z$-function along the critical line