Properties

Label 2-840-1.1-c3-0-1
Degree $2$
Conductor $840$
Sign $1$
Analytic cond. $49.5616$
Root an. cond. $7.04000$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s − 7·7-s + 9·9-s − 54·13-s + 15·15-s + 74·17-s − 20·19-s + 21·21-s − 160·23-s + 25·25-s − 27·27-s − 246·29-s + 84·31-s + 35·35-s + 306·37-s + 162·39-s − 370·41-s − 88·43-s − 45·45-s + 460·47-s + 49·49-s − 222·51-s + 686·53-s + 60·57-s − 684·59-s + 186·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.15·13-s + 0.258·15-s + 1.05·17-s − 0.241·19-s + 0.218·21-s − 1.45·23-s + 1/5·25-s − 0.192·27-s − 1.57·29-s + 0.486·31-s + 0.169·35-s + 1.35·37-s + 0.665·39-s − 1.40·41-s − 0.312·43-s − 0.149·45-s + 1.42·47-s + 1/7·49-s − 0.609·51-s + 1.77·53-s + 0.139·57-s − 1.50·59-s + 0.390·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(49.5616\)
Root analytic conductor: \(7.04000\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9426931048\)
\(L(\frac12)\) \(\approx\) \(0.9426931048\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 + p T \)
7 \( 1 + p T \)
good11 \( 1 + p^{3} T^{2} \)
13 \( 1 + 54 T + p^{3} T^{2} \)
17 \( 1 - 74 T + p^{3} T^{2} \)
19 \( 1 + 20 T + p^{3} T^{2} \)
23 \( 1 + 160 T + p^{3} T^{2} \)
29 \( 1 + 246 T + p^{3} T^{2} \)
31 \( 1 - 84 T + p^{3} T^{2} \)
37 \( 1 - 306 T + p^{3} T^{2} \)
41 \( 1 + 370 T + p^{3} T^{2} \)
43 \( 1 + 88 T + p^{3} T^{2} \)
47 \( 1 - 460 T + p^{3} T^{2} \)
53 \( 1 - 686 T + p^{3} T^{2} \)
59 \( 1 + 684 T + p^{3} T^{2} \)
61 \( 1 - 186 T + p^{3} T^{2} \)
67 \( 1 + 904 T + p^{3} T^{2} \)
71 \( 1 - 912 T + p^{3} T^{2} \)
73 \( 1 + 26 T + p^{3} T^{2} \)
79 \( 1 + 320 T + p^{3} T^{2} \)
83 \( 1 - 732 T + p^{3} T^{2} \)
89 \( 1 - 1150 T + p^{3} T^{2} \)
97 \( 1 - 1526 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.973865167940610734689336542021, −9.099693727737842741262319618358, −7.85563298689590552270145868120, −7.36414877579401367892080783573, −6.25310100907330996962786929381, −5.46061089489792237989369606763, −4.43188189905304208569554183276, −3.46412967930519860522546400117, −2.12080826408007260461578631576, −0.53562169839904021585016562966, 0.53562169839904021585016562966, 2.12080826408007260461578631576, 3.46412967930519860522546400117, 4.43188189905304208569554183276, 5.46061089489792237989369606763, 6.25310100907330996962786929381, 7.36414877579401367892080783573, 7.85563298689590552270145868120, 9.099693727737842741262319618358, 9.973865167940610734689336542021

Graph of the $Z$-function along the critical line