L(s) = 1 | + (4.5 − 7.79i)3-s + (−23.0 − 39.9i)5-s + (112. + 64.8i)7-s + (−40.5 − 70.1i)9-s + (315. − 546. i)11-s − 1.07e3·13-s − 415.·15-s + (−80.5 + 139. i)17-s + (−588. − 1.01e3i)19-s + (1.01e3 − 583. i)21-s + (−1.08e3 − 1.87e3i)23-s + (499. − 864. i)25-s − 729·27-s − 4.49e3·29-s + (−159. + 275. i)31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.412 − 0.714i)5-s + (0.866 + 0.500i)7-s + (−0.166 − 0.288i)9-s + (0.786 − 1.36i)11-s − 1.77·13-s − 0.476·15-s + (−0.0676 + 0.117i)17-s + (−0.373 − 0.647i)19-s + (0.500 − 0.288i)21-s + (−0.426 − 0.738i)23-s + (0.159 − 0.276i)25-s − 0.192·27-s − 0.991·29-s + (−0.0297 + 0.0515i)31-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(−0.553+0.832i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(−0.553+0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
−0.553+0.832i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), −0.553+0.832i)
|
Particular Values
L(3) |
≈ |
0.709868−1.32480i |
L(21) |
≈ |
0.709868−1.32480i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−4.5+7.79i)T |
| 7 | 1+(−112.−64.8i)T |
good | 5 | 1+(23.0+39.9i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(−315.+546.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+1.07e3T+3.71e5T2 |
| 17 | 1+(80.5−139.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(588.+1.01e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(1.08e3+1.87e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+4.49e3T+2.05e7T2 |
| 31 | 1+(159.−275.i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(7.59e3+1.31e4i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−2.05e4T+1.15e8T2 |
| 43 | 1+455.T+1.47e8T2 |
| 47 | 1+(−1.03e4−1.79e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−9.65e3+1.67e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(3.18e3−5.51e3i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(−2.45e4−4.25e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(1.70e4−2.94e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1−6.29e4T+1.80e9T2 |
| 73 | 1+(−4.43e3+7.67e3i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(1.72e4+2.98e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1+7.04e3T+3.93e9T2 |
| 89 | 1+(−1.01e4−1.75e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−5.40e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72890334177401793563532205446, −12.01495564874337591776574733795, −11.00711257016931531405157934910, −9.182087485484873618611260321011, −8.447653488393144275511144238186, −7.32389543320265269165928588100, −5.69917077417117844043269322620, −4.31797698229704536341713315901, −2.36035497088433317751405215993, −0.59708451868360033029805090933,
2.05863421924980949923692904651, 3.87601836887854677612210552990, 4.97142498976516659030371445022, 7.05698464223477029641445075135, 7.76275016492297043572347826177, 9.438423143405865236972338388396, 10.29674782473129323001954977895, 11.46719893314675671292244673145, 12.40306779388706635323732208957, 14.07675148872478654453447857927