L(s) = 1 | + (−4.5 + 7.79i)3-s + (−32.7 − 56.7i)5-s + (40.6 + 123. i)7-s + (−40.5 − 70.1i)9-s + (122. − 212. i)11-s + 434.·13-s + 590.·15-s + (551. − 954. i)17-s + (1.43e3 + 2.49e3i)19-s + (−1.14e3 − 237. i)21-s + (2.11e3 + 3.66e3i)23-s + (−587. + 1.01e3i)25-s + 729·27-s + 4.96e3·29-s + (4.39e3 − 7.60e3i)31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.586 − 1.01i)5-s + (0.313 + 0.949i)7-s + (−0.166 − 0.288i)9-s + (0.305 − 0.529i)11-s + 0.713·13-s + 0.677·15-s + (0.462 − 0.801i)17-s + (0.914 + 1.58i)19-s + (−0.565 − 0.117i)21-s + (0.833 + 1.44i)23-s + (−0.187 + 0.325i)25-s + 0.192·27-s + 1.09·29-s + (0.820 − 1.42i)31-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(0.967−0.252i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(0.967−0.252i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
0.967−0.252i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), 0.967−0.252i)
|
Particular Values
L(3) |
≈ |
1.56939+0.201627i |
L(21) |
≈ |
1.56939+0.201627i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5−7.79i)T |
| 7 | 1+(−40.6−123.i)T |
good | 5 | 1+(32.7+56.7i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(−122.+212.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−434.T+3.71e5T2 |
| 17 | 1+(−551.+954.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−1.43e3−2.49e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−2.11e3−3.66e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1−4.96e3T+2.05e7T2 |
| 31 | 1+(−4.39e3+7.60e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−1.22e3−2.11e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+3.66e3T+1.15e8T2 |
| 43 | 1+7.19e3T+1.47e8T2 |
| 47 | 1+(1.63e3+2.83e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−1.51e3+2.61e3i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−2.57e4+4.45e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(−6.65e3−1.15e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(1.54e4−2.67e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+4.18e4T+1.80e9T2 |
| 73 | 1+(1.73e4−2.99e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(3.87e4+6.71e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−1.00e5T+3.93e9T2 |
| 89 | 1+(2.03e4+3.53e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−1.40e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.26027166012384193637313671824, −11.79122298824871458356527287760, −11.69238872535378780076750628609, −9.886892997296700479002632918971, −8.830356180626795159502430988931, −7.930966958132089606405990448490, −5.91514265393052544770492906593, −4.94664991579940228256524848705, −3.46041546340850499760503935043, −1.05633571407992533871828736756,
0.990555564616122450622168838021, 3.09244846324587534226707969096, 4.64343726847038328327050505178, 6.62331135394178576187184158284, 7.21260997944316618923009705267, 8.509879180809295599831043552427, 10.34928873525461886716739690646, 11.02842325538722746114786060879, 12.05291833619398836171219747383, 13.33064502462539439191746420152