L(s) = 1 | + (−4.5 + 7.79i)3-s + (−32.7 − 56.7i)5-s + (40.6 + 123. i)7-s + (−40.5 − 70.1i)9-s + (122. − 212. i)11-s + 434.·13-s + 590.·15-s + (551. − 954. i)17-s + (1.43e3 + 2.49e3i)19-s + (−1.14e3 − 237. i)21-s + (2.11e3 + 3.66e3i)23-s + (−587. + 1.01e3i)25-s + 729·27-s + 4.96e3·29-s + (4.39e3 − 7.60e3i)31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.586 − 1.01i)5-s + (0.313 + 0.949i)7-s + (−0.166 − 0.288i)9-s + (0.305 − 0.529i)11-s + 0.713·13-s + 0.677·15-s + (0.462 − 0.801i)17-s + (0.914 + 1.58i)19-s + (−0.565 − 0.117i)21-s + (0.833 + 1.44i)23-s + (−0.187 + 0.325i)25-s + 0.192·27-s + 1.09·29-s + (0.820 − 1.42i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.252i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.967 - 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.56939 + 0.201627i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56939 + 0.201627i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 - 7.79i)T \) |
| 7 | \( 1 + (-40.6 - 123. i)T \) |
good | 5 | \( 1 + (32.7 + 56.7i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-122. + 212. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 434.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-551. + 954. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-1.43e3 - 2.49e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-2.11e3 - 3.66e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 4.96e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-4.39e3 + 7.60e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-1.22e3 - 2.11e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 3.66e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 7.19e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.63e3 + 2.83e3i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.51e3 + 2.61e3i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-2.57e4 + 4.45e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-6.65e3 - 1.15e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (1.54e4 - 2.67e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 4.18e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.73e4 - 2.99e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.87e4 + 6.71e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 1.00e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + (2.03e4 + 3.53e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.40e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.26027166012384193637313671824, −11.79122298824871458356527287760, −11.69238872535378780076750628609, −9.886892997296700479002632918971, −8.830356180626795159502430988931, −7.930966958132089606405990448490, −5.91514265393052544770492906593, −4.94664991579940228256524848705, −3.46041546340850499760503935043, −1.05633571407992533871828736756,
0.990555564616122450622168838021, 3.09244846324587534226707969096, 4.64343726847038328327050505178, 6.62331135394178576187184158284, 7.21260997944316618923009705267, 8.509879180809295599831043552427, 10.34928873525461886716739690646, 11.02842325538722746114786060879, 12.05291833619398836171219747383, 13.33064502462539439191746420152