L(s) = 1 | + (4.5 + 7.79i)3-s + (46.4 − 80.3i)5-s + (−118. − 52.8i)7-s + (−40.5 + 70.1i)9-s + (−70.3 − 121. i)11-s − 1.11e3·13-s + 835.·15-s + (−27.4 − 47.5i)17-s + (855. − 1.48e3i)19-s + (−120. − 1.16e3i)21-s + (1.64e3 − 2.84e3i)23-s + (−2.74e3 − 4.75e3i)25-s − 729·27-s − 3.79e3·29-s + (2.42e3 + 4.19e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.830 − 1.43i)5-s + (−0.913 − 0.407i)7-s + (−0.166 + 0.288i)9-s + (−0.175 − 0.303i)11-s − 1.82·13-s + 0.958·15-s + (−0.0230 − 0.0398i)17-s + (0.543 − 0.942i)19-s + (−0.0596 − 0.574i)21-s + (0.647 − 1.12i)23-s + (−0.878 − 1.52i)25-s − 0.192·27-s − 0.837·29-s + (0.452 + 0.784i)31-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)(−0.349+0.937i)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)(−0.349+0.937i)Λ(1−s)
Degree: |
2 |
Conductor: |
84
= 22⋅3⋅7
|
Sign: |
−0.349+0.937i
|
Analytic conductor: |
13.4722 |
Root analytic conductor: |
3.67045 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ84(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 84, ( :5/2), −0.349+0.937i)
|
Particular Values
L(3) |
≈ |
0.785765−1.13138i |
L(21) |
≈ |
0.785765−1.13138i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1+(118.+52.8i)T |
good | 5 | 1+(−46.4+80.3i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(70.3+121.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+1.11e3T+3.71e5T2 |
| 17 | 1+(27.4+47.5i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−855.+1.48e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−1.64e3+2.84e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+3.79e3T+2.05e7T2 |
| 31 | 1+(−2.42e3−4.19e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−5.68e3+9.84e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+1.03e4T+1.15e8T2 |
| 43 | 1−7.13e3T+1.47e8T2 |
| 47 | 1+(−8.20e3+1.42e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−1.04e4−1.81e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−1.81e4−3.13e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(2.47e3−4.28e3i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−1.14e4−1.98e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+2.63e4T+1.80e9T2 |
| 73 | 1+(2.76e4+4.79e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−2.49e4+4.32e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−4.48e4T+3.93e9T2 |
| 89 | 1+(6.39e4−1.10e5i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+6.56e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.02741430687984908008012757150, −12.19068378761526755133923235874, −10.41363733177450411376342760542, −9.504488548281649637739702314764, −8.842014451151671326518149548054, −7.19406879819791740366265629200, −5.49814810114195602304991809387, −4.51771336869341740947453197125, −2.60358281801876229093346292117, −0.51937325190237593135441804386,
2.20108013975625415349399278912, 3.16434361400646930423604786594, 5.60434048375190981678367947790, 6.75979001434597726818984506862, 7.59296479946980574305069520869, 9.610602569151661042152575981513, 9.971235118039912962144125961376, 11.54273966427230089146447707697, 12.68579488606645178240679712813, 13.67441992725665850545295592024