L(s) = 1 | + (0.553 + 1.30i)2-s + (0.5 − 0.866i)3-s + (−1.38 + 1.44i)4-s + (0.834 − 0.481i)5-s + (1.40 + 0.171i)6-s + (1.20 + 2.35i)7-s + (−2.64 − 1.00i)8-s + (−0.499 − 0.866i)9-s + (1.08 + 0.819i)10-s + (−4.74 − 2.74i)11-s + (0.553 + 1.92i)12-s − 3.75i·13-s + (−2.40 + 2.86i)14-s − 0.963i·15-s + (−0.147 − 3.99i)16-s + (−0.594 − 0.343i)17-s + ⋯ |
L(s) = 1 | + (0.391 + 0.920i)2-s + (0.288 − 0.499i)3-s + (−0.693 + 0.720i)4-s + (0.373 − 0.215i)5-s + (0.573 + 0.0700i)6-s + (0.453 + 0.891i)7-s + (−0.934 − 0.356i)8-s + (−0.166 − 0.288i)9-s + (0.344 + 0.259i)10-s + (−1.43 − 0.826i)11-s + (0.159 + 0.554i)12-s − 1.04i·13-s + (−0.642 + 0.766i)14-s − 0.248i·15-s + (−0.0369 − 0.999i)16-s + (−0.144 − 0.0832i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06975 + 0.502457i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06975 + 0.502457i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.553 - 1.30i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-1.20 - 2.35i)T \) |
good | 5 | \( 1 + (-0.834 + 0.481i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (4.74 + 2.74i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.75iT - 13T^{2} \) |
| 17 | \( 1 + (0.594 + 0.343i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.44 - 4.22i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.07 + 0.620i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.48T + 29T^{2} \) |
| 31 | \( 1 + (-2.41 + 4.18i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.36 - 2.36i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9.42iT - 41T^{2} \) |
| 43 | \( 1 - 5.97iT - 43T^{2} \) |
| 47 | \( 1 + (-1.80 - 3.13i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.04 + 3.54i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.34 + 10.9i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.01 + 5.20i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.17 + 4.71i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.1iT - 71T^{2} \) |
| 73 | \( 1 + (5.76 + 3.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.22 - 0.707i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 0.543T + 83T^{2} \) |
| 89 | \( 1 + (-0.480 + 0.277i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.49054529717512781859990708269, −13.29651837168722452713463881168, −12.82938367091031545779349714448, −11.46781421319337776265924412790, −9.700345851384362094341267837965, −8.307230740322969498036362617479, −7.80964686447910145200975980040, −5.97324229688518232702205250684, −5.24578657898639484590978117717, −2.96801562536090375430883642416,
2.35976836196472391233673785529, 4.15933427129006083675258968441, 5.23466620581489199000572578765, 7.23889164569362100279602592175, 8.889818113627612119867174198497, 10.10259921838374615518847751409, 10.68148255099762367157945451889, 11.87073124676110188035354614545, 13.30148199079604510951986617509, 13.87706438420434866849942305097