L(s) = 1 | + (1.26 + 0.638i)2-s + (−0.5 − 0.866i)3-s + (1.18 + 1.61i)4-s + (0.380 + 0.219i)5-s + (−0.0777 − 1.41i)6-s + (−2.02 − 1.70i)7-s + (0.464 + 2.79i)8-s + (−0.499 + 0.866i)9-s + (0.339 + 0.519i)10-s + (−1.83 + 1.05i)11-s + (0.803 − 1.83i)12-s − 3.84i·13-s + (−1.46 − 3.44i)14-s − 0.438i·15-s + (−1.19 + 3.81i)16-s + (−4.89 + 2.82i)17-s + ⋯ |
L(s) = 1 | + (0.892 + 0.451i)2-s + (−0.288 − 0.499i)3-s + (0.592 + 0.805i)4-s + (0.170 + 0.0981i)5-s + (−0.0317 − 0.576i)6-s + (−0.764 − 0.644i)7-s + (0.164 + 0.986i)8-s + (−0.166 + 0.288i)9-s + (0.107 + 0.164i)10-s + (−0.552 + 0.318i)11-s + (0.232 − 0.528i)12-s − 1.06i·13-s + (−0.391 − 0.920i)14-s − 0.113i·15-s + (−0.299 + 0.954i)16-s + (−1.18 + 0.684i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 - 0.324i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.945 - 0.324i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30937 + 0.218274i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30937 + 0.218274i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.26 - 0.638i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (2.02 + 1.70i)T \) |
good | 5 | \( 1 + (-0.380 - 0.219i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.83 - 1.05i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.84iT - 13T^{2} \) |
| 17 | \( 1 + (4.89 - 2.82i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.48 + 2.57i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.13 - 2.38i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.02T + 29T^{2} \) |
| 31 | \( 1 + (-3.71 - 6.43i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.64 + 4.57i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6.81iT - 41T^{2} \) |
| 43 | \( 1 - 4.38iT - 43T^{2} \) |
| 47 | \( 1 + (-0.844 + 1.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.35 + 9.27i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.05 + 7.03i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.35 - 3.09i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.79 + 3.92i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.16iT - 71T^{2} \) |
| 73 | \( 1 + (8.69 - 5.01i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (13.4 + 7.79i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5.49T + 83T^{2} \) |
| 89 | \( 1 + (9.02 + 5.20i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.22iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.12419542977144116676208420424, −13.10839647346898758757573051491, −12.73412384741715867269266847913, −11.27671800140568837115877842674, −10.21053657525708806360020196963, −8.295618089659163629589658388513, −7.08787257613416308919925130585, −6.19148648268863669786793614894, −4.74195767023754797170860535265, −2.93046127186041610174628907038,
2.73646517998044015543004009300, 4.40558674575738670170015195993, 5.69223575062317852967504118121, 6.78587590863770028962101775216, 9.021160474299183535693520809658, 9.983048142354471465974763990626, 11.20264449354919681737415742884, 12.04289346586973675320783443199, 13.17979718492096294311557233550, 14.02653526872965812575454138374