Properties

Label 2-84-1.1-c5-0-3
Degree $2$
Conductor $84$
Sign $1$
Analytic cond. $13.4722$
Root an. cond. $3.67045$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 106.·5-s + 49·7-s + 81·9-s − 250.·11-s − 300.·13-s + 957.·15-s + 2.02e3·17-s − 2.25e3·19-s + 441·21-s + 3.09e3·23-s + 8.19e3·25-s + 729·27-s − 6.60e3·29-s + 833.·31-s − 2.25e3·33-s + 5.21e3·35-s + 8.95e3·37-s − 2.70e3·39-s − 7.20e3·41-s + 1.44e4·43-s + 8.61e3·45-s − 1.79e4·47-s + 2.40e3·49-s + 1.81e4·51-s − 1.58e4·53-s − 2.66e4·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.90·5-s + 0.377·7-s + 0.333·9-s − 0.623·11-s − 0.493·13-s + 1.09·15-s + 1.69·17-s − 1.43·19-s + 0.218·21-s + 1.21·23-s + 2.62·25-s + 0.192·27-s − 1.45·29-s + 0.155·31-s − 0.359·33-s + 0.719·35-s + 1.07·37-s − 0.284·39-s − 0.669·41-s + 1.19·43-s + 0.634·45-s − 1.18·47-s + 0.142·49-s + 0.979·51-s − 0.773·53-s − 1.18·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(84\)    =    \(2^{2} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(13.4722\)
Root analytic conductor: \(3.67045\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 84,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.990911079\)
\(L(\frac12)\) \(\approx\) \(2.990911079\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
7 \( 1 - 49T \)
good5 \( 1 - 106.T + 3.12e3T^{2} \)
11 \( 1 + 250.T + 1.61e5T^{2} \)
13 \( 1 + 300.T + 3.71e5T^{2} \)
17 \( 1 - 2.02e3T + 1.41e6T^{2} \)
19 \( 1 + 2.25e3T + 2.47e6T^{2} \)
23 \( 1 - 3.09e3T + 6.43e6T^{2} \)
29 \( 1 + 6.60e3T + 2.05e7T^{2} \)
31 \( 1 - 833.T + 2.86e7T^{2} \)
37 \( 1 - 8.95e3T + 6.93e7T^{2} \)
41 \( 1 + 7.20e3T + 1.15e8T^{2} \)
43 \( 1 - 1.44e4T + 1.47e8T^{2} \)
47 \( 1 + 1.79e4T + 2.29e8T^{2} \)
53 \( 1 + 1.58e4T + 4.18e8T^{2} \)
59 \( 1 + 2.67e4T + 7.14e8T^{2} \)
61 \( 1 + 2.67e4T + 8.44e8T^{2} \)
67 \( 1 + 4.44e4T + 1.35e9T^{2} \)
71 \( 1 + 2.04e4T + 1.80e9T^{2} \)
73 \( 1 - 3.87e4T + 2.07e9T^{2} \)
79 \( 1 + 6.72e4T + 3.07e9T^{2} \)
83 \( 1 + 3.58e4T + 3.93e9T^{2} \)
89 \( 1 - 1.06e5T + 5.58e9T^{2} \)
97 \( 1 - 9.81e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30371829236956142135149667851, −12.66447960539359114067315176878, −10.77972170603551267427942591296, −9.889446047578646413826003908938, −9.016983762345606754708982675844, −7.62200588550972514227763524971, −6.09872618699120467039700897528, −4.99941570222576614436449275870, −2.79822937856559072442082209064, −1.58768645208602917670190450878, 1.58768645208602917670190450878, 2.79822937856559072442082209064, 4.99941570222576614436449275870, 6.09872618699120467039700897528, 7.62200588550972514227763524971, 9.016983762345606754708982675844, 9.889446047578646413826003908938, 10.77972170603551267427942591296, 12.66447960539359114067315176878, 13.30371829236956142135149667851

Graph of the $Z$-function along the critical line