L(s) = 1 | + 9·3-s + 106.·5-s + 49·7-s + 81·9-s − 250.·11-s − 300.·13-s + 957.·15-s + 2.02e3·17-s − 2.25e3·19-s + 441·21-s + 3.09e3·23-s + 8.19e3·25-s + 729·27-s − 6.60e3·29-s + 833.·31-s − 2.25e3·33-s + 5.21e3·35-s + 8.95e3·37-s − 2.70e3·39-s − 7.20e3·41-s + 1.44e4·43-s + 8.61e3·45-s − 1.79e4·47-s + 2.40e3·49-s + 1.81e4·51-s − 1.58e4·53-s − 2.66e4·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.90·5-s + 0.377·7-s + 0.333·9-s − 0.623·11-s − 0.493·13-s + 1.09·15-s + 1.69·17-s − 1.43·19-s + 0.218·21-s + 1.21·23-s + 2.62·25-s + 0.192·27-s − 1.45·29-s + 0.155·31-s − 0.359·33-s + 0.719·35-s + 1.07·37-s − 0.284·39-s − 0.669·41-s + 1.19·43-s + 0.634·45-s − 1.18·47-s + 0.142·49-s + 0.979·51-s − 0.773·53-s − 1.18·55-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(84s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.990911079 |
L(21) |
≈ |
2.990911079 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−9T |
| 7 | 1−49T |
good | 5 | 1−106.T+3.12e3T2 |
| 11 | 1+250.T+1.61e5T2 |
| 13 | 1+300.T+3.71e5T2 |
| 17 | 1−2.02e3T+1.41e6T2 |
| 19 | 1+2.25e3T+2.47e6T2 |
| 23 | 1−3.09e3T+6.43e6T2 |
| 29 | 1+6.60e3T+2.05e7T2 |
| 31 | 1−833.T+2.86e7T2 |
| 37 | 1−8.95e3T+6.93e7T2 |
| 41 | 1+7.20e3T+1.15e8T2 |
| 43 | 1−1.44e4T+1.47e8T2 |
| 47 | 1+1.79e4T+2.29e8T2 |
| 53 | 1+1.58e4T+4.18e8T2 |
| 59 | 1+2.67e4T+7.14e8T2 |
| 61 | 1+2.67e4T+8.44e8T2 |
| 67 | 1+4.44e4T+1.35e9T2 |
| 71 | 1+2.04e4T+1.80e9T2 |
| 73 | 1−3.87e4T+2.07e9T2 |
| 79 | 1+6.72e4T+3.07e9T2 |
| 83 | 1+3.58e4T+3.93e9T2 |
| 89 | 1−1.06e5T+5.58e9T2 |
| 97 | 1−9.81e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.30371829236956142135149667851, −12.66447960539359114067315176878, −10.77972170603551267427942591296, −9.889446047578646413826003908938, −9.016983762345606754708982675844, −7.62200588550972514227763524971, −6.09872618699120467039700897528, −4.99941570222576614436449275870, −2.79822937856559072442082209064, −1.58768645208602917670190450878,
1.58768645208602917670190450878, 2.79822937856559072442082209064, 4.99941570222576614436449275870, 6.09872618699120467039700897528, 7.62200588550972514227763524971, 9.016983762345606754708982675844, 9.889446047578646413826003908938, 10.77972170603551267427942591296, 12.66447960539359114067315176878, 13.30371829236956142135149667851