L(s) = 1 | − 3·3-s + 6·5-s + 7·7-s + 9·9-s + 36·11-s + 62·13-s − 18·15-s + 114·17-s − 76·19-s − 21·21-s − 24·23-s − 89·25-s − 27·27-s + 54·29-s − 112·31-s − 108·33-s + 42·35-s − 178·37-s − 186·39-s + 378·41-s − 172·43-s + 54·45-s − 192·47-s + 49·49-s − 342·51-s − 402·53-s + 216·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.536·5-s + 0.377·7-s + 1/3·9-s + 0.986·11-s + 1.32·13-s − 0.309·15-s + 1.62·17-s − 0.917·19-s − 0.218·21-s − 0.217·23-s − 0.711·25-s − 0.192·27-s + 0.345·29-s − 0.648·31-s − 0.569·33-s + 0.202·35-s − 0.790·37-s − 0.763·39-s + 1.43·41-s − 0.609·43-s + 0.178·45-s − 0.595·47-s + 1/7·49-s − 0.939·51-s − 1.04·53-s + 0.529·55-s + ⋯ |
Λ(s)=(=(84s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(84s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.527469426 |
L(21) |
≈ |
1.527469426 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+pT |
| 7 | 1−pT |
good | 5 | 1−6T+p3T2 |
| 11 | 1−36T+p3T2 |
| 13 | 1−62T+p3T2 |
| 17 | 1−114T+p3T2 |
| 19 | 1+4pT+p3T2 |
| 23 | 1+24T+p3T2 |
| 29 | 1−54T+p3T2 |
| 31 | 1+112T+p3T2 |
| 37 | 1+178T+p3T2 |
| 41 | 1−378T+p3T2 |
| 43 | 1+4pT+p3T2 |
| 47 | 1+192T+p3T2 |
| 53 | 1+402T+p3T2 |
| 59 | 1−396T+p3T2 |
| 61 | 1−254T+p3T2 |
| 67 | 1+1012T+p3T2 |
| 71 | 1−840T+p3T2 |
| 73 | 1−890T+p3T2 |
| 79 | 1−80T+p3T2 |
| 83 | 1+108T+p3T2 |
| 89 | 1+1638T+p3T2 |
| 97 | 1−1010T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.83201726133467512318490119763, −12.61856591791949487538252939790, −11.58908163730096665968715601934, −10.58315257361744133740154201358, −9.426228672939652439237526663022, −8.114389789415304142426981918414, −6.51779561773031791860008209629, −5.56030199737424878272255152376, −3.86728510554865626200271519258, −1.42982332922689640035017855530,
1.42982332922689640035017855530, 3.86728510554865626200271519258, 5.56030199737424878272255152376, 6.51779561773031791860008209629, 8.114389789415304142426981918414, 9.426228672939652439237526663022, 10.58315257361744133740154201358, 11.58908163730096665968715601934, 12.61856591791949487538252939790, 13.83201726133467512318490119763