L(s) = 1 | − 2·2-s + 2·4-s + 7-s + 5·11-s + 2·13-s − 2·14-s − 4·16-s − 10·22-s + 2·23-s − 4·26-s + 2·28-s − 6·29-s − 4·31-s + 8·32-s + 37-s + 9·41-s − 2·43-s + 10·44-s − 4·46-s − 9·47-s − 6·49-s + 4·52-s + 53-s + 12·58-s − 8·59-s − 8·61-s + 8·62-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s + 0.377·7-s + 1.50·11-s + 0.554·13-s − 0.534·14-s − 16-s − 2.13·22-s + 0.417·23-s − 0.784·26-s + 0.377·28-s − 1.11·29-s − 0.718·31-s + 1.41·32-s + 0.164·37-s + 1.40·41-s − 0.304·43-s + 1.50·44-s − 0.589·46-s − 1.31·47-s − 6/7·49-s + 0.554·52-s + 0.137·53-s + 1.57·58-s − 1.04·59-s − 1.02·61-s + 1.01·62-s + ⋯ |
Λ(s)=(=(8325s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8325s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 37 | 1−T |
good | 2 | 1+pT+pT2 |
| 7 | 1−T+pT2 |
| 11 | 1−5T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+pT2 |
| 23 | 1−2T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+4T+pT2 |
| 41 | 1−9T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1+9T+pT2 |
| 53 | 1−T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1+9T+pT2 |
| 73 | 1−T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+15T+pT2 |
| 89 | 1+4T+pT2 |
| 97 | 1+4T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.65121136122522161197318054345, −6.94384664150198731468349379760, −6.36962640367681528657535462564, −5.55465832553444053493877306394, −4.50549554166763456403503901204, −3.91879626410547859574461452178, −2.89439405381897961095418638007, −1.61293502722827766917172111896, −1.35033591033027974757425948725, 0,
1.35033591033027974757425948725, 1.61293502722827766917172111896, 2.89439405381897961095418638007, 3.91879626410547859574461452178, 4.50549554166763456403503901204, 5.55465832553444053493877306394, 6.36962640367681528657535462564, 6.94384664150198731468349379760, 7.65121136122522161197318054345