Properties

Label 2-8325-1.1-c1-0-239
Degree $2$
Conductor $8325$
Sign $-1$
Analytic cond. $66.4754$
Root an. cond. $8.15324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 7-s + 5·11-s + 2·13-s − 2·14-s − 4·16-s − 10·22-s + 2·23-s − 4·26-s + 2·28-s − 6·29-s − 4·31-s + 8·32-s + 37-s + 9·41-s − 2·43-s + 10·44-s − 4·46-s − 9·47-s − 6·49-s + 4·52-s + 53-s + 12·58-s − 8·59-s − 8·61-s + 8·62-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.377·7-s + 1.50·11-s + 0.554·13-s − 0.534·14-s − 16-s − 2.13·22-s + 0.417·23-s − 0.784·26-s + 0.377·28-s − 1.11·29-s − 0.718·31-s + 1.41·32-s + 0.164·37-s + 1.40·41-s − 0.304·43-s + 1.50·44-s − 0.589·46-s − 1.31·47-s − 6/7·49-s + 0.554·52-s + 0.137·53-s + 1.57·58-s − 1.04·59-s − 1.02·61-s + 1.01·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8325\)    =    \(3^{2} \cdot 5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(66.4754\)
Root analytic conductor: \(8.15324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 15 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65121136122522161197318054345, −6.94384664150198731468349379760, −6.36962640367681528657535462564, −5.55465832553444053493877306394, −4.50549554166763456403503901204, −3.91879626410547859574461452178, −2.89439405381897961095418638007, −1.61293502722827766917172111896, −1.35033591033027974757425948725, 0, 1.35033591033027974757425948725, 1.61293502722827766917172111896, 2.89439405381897961095418638007, 3.91879626410547859574461452178, 4.50549554166763456403503901204, 5.55465832553444053493877306394, 6.36962640367681528657535462564, 6.94384664150198731468349379760, 7.65121136122522161197318054345

Graph of the $Z$-function along the critical line