L(s) = 1 | − i·3-s + (−1.58 − 1.58i)5-s + (1.58 + 1.58i)7-s + 2·9-s + (2.16 + 2.16i)11-s + (−0.418 + 3.58i)13-s + (−1.58 + 1.58i)15-s + 5.32i·17-s + (5.16 − 5.16i)19-s + (1.58 − 1.58i)21-s + 0.837·23-s − 5i·27-s − 5.16·29-s + (5.16 − 5.16i)31-s + (2.16 − 2.16i)33-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.707 − 0.707i)5-s + (0.597 + 0.597i)7-s + 0.666·9-s + (0.651 + 0.651i)11-s + (−0.116 + 0.993i)13-s + (−0.408 + 0.408i)15-s + 1.29i·17-s + (1.18 − 1.18i)19-s + (0.345 − 0.345i)21-s + 0.174·23-s − 0.962i·27-s − 0.958·29-s + (0.927 − 0.927i)31-s + (0.376 − 0.376i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 + 0.399i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.916 + 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.60121 - 0.333289i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60121 - 0.333289i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (0.418 - 3.58i)T \) |
good | 3 | \( 1 + iT - 3T^{2} \) |
| 5 | \( 1 + (1.58 + 1.58i)T + 5iT^{2} \) |
| 7 | \( 1 + (-1.58 - 1.58i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.16 - 2.16i)T + 11iT^{2} \) |
| 17 | \( 1 - 5.32iT - 17T^{2} \) |
| 19 | \( 1 + (-5.16 + 5.16i)T - 19iT^{2} \) |
| 23 | \( 1 - 0.837T + 23T^{2} \) |
| 29 | \( 1 + 5.16T + 29T^{2} \) |
| 31 | \( 1 + (-5.16 + 5.16i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.418 + 0.418i)T - 37iT^{2} \) |
| 41 | \( 1 + (1.16 + 1.16i)T + 41iT^{2} \) |
| 43 | \( 1 - 5T + 43T^{2} \) |
| 47 | \( 1 + (-2.74 - 2.74i)T + 47iT^{2} \) |
| 53 | \( 1 - 9.48T + 53T^{2} \) |
| 59 | \( 1 + (-4 - 4i)T + 59iT^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + (5.32 - 5.32i)T - 67iT^{2} \) |
| 71 | \( 1 + (-1.58 + 1.58i)T - 71iT^{2} \) |
| 73 | \( 1 + (6 - 6i)T - 73iT^{2} \) |
| 79 | \( 1 + 15.4iT - 79T^{2} \) |
| 83 | \( 1 + (12.1 - 12.1i)T - 83iT^{2} \) |
| 89 | \( 1 + (9.16 - 9.16i)T - 89iT^{2} \) |
| 97 | \( 1 + (10.1 + 10.1i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02187270258033471667364694374, −9.149877047018607673086603917155, −8.480253403851347330582991488322, −7.52760048231310368150659583009, −6.93240619363106360047198192706, −5.78345553161091382466960814130, −4.56942151507851981626280540177, −4.06520034774877815047634847791, −2.22953969707436585094543426499, −1.17888513327873646033439619151,
1.10959431488628920150437446405, 3.11570543813214050581105733495, 3.76852924375064055021378055185, 4.79003191676737789047365590490, 5.76902237208018730887263107122, 7.24540711618315172626731583655, 7.42990170117202509222450356877, 8.537027082353804669769299242756, 9.647995358056612608454678818658, 10.27917477054087500789819882562