L(s) = 1 | − i·3-s + (−1.58 − 1.58i)5-s + (1.58 + 1.58i)7-s + 2·9-s + (2.16 + 2.16i)11-s + (−0.418 + 3.58i)13-s + (−1.58 + 1.58i)15-s + 5.32i·17-s + (5.16 − 5.16i)19-s + (1.58 − 1.58i)21-s + 0.837·23-s − 5i·27-s − 5.16·29-s + (5.16 − 5.16i)31-s + (2.16 − 2.16i)33-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.707 − 0.707i)5-s + (0.597 + 0.597i)7-s + 0.666·9-s + (0.651 + 0.651i)11-s + (−0.116 + 0.993i)13-s + (−0.408 + 0.408i)15-s + 1.29i·17-s + (1.18 − 1.18i)19-s + (0.345 − 0.345i)21-s + 0.174·23-s − 0.962i·27-s − 0.958·29-s + (0.927 − 0.927i)31-s + (0.376 − 0.376i)33-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.916+0.399i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(0.916+0.399i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.916+0.399i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(255,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), 0.916+0.399i)
|
Particular Values
L(1) |
≈ |
1.60121−0.333289i |
L(21) |
≈ |
1.60121−0.333289i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(0.418−3.58i)T |
good | 3 | 1+iT−3T2 |
| 5 | 1+(1.58+1.58i)T+5iT2 |
| 7 | 1+(−1.58−1.58i)T+7iT2 |
| 11 | 1+(−2.16−2.16i)T+11iT2 |
| 17 | 1−5.32iT−17T2 |
| 19 | 1+(−5.16+5.16i)T−19iT2 |
| 23 | 1−0.837T+23T2 |
| 29 | 1+5.16T+29T2 |
| 31 | 1+(−5.16+5.16i)T−31iT2 |
| 37 | 1+(−0.418+0.418i)T−37iT2 |
| 41 | 1+(1.16+1.16i)T+41iT2 |
| 43 | 1−5T+43T2 |
| 47 | 1+(−2.74−2.74i)T+47iT2 |
| 53 | 1−9.48T+53T2 |
| 59 | 1+(−4−4i)T+59iT2 |
| 61 | 1+2T+61T2 |
| 67 | 1+(5.32−5.32i)T−67iT2 |
| 71 | 1+(−1.58+1.58i)T−71iT2 |
| 73 | 1+(6−6i)T−73iT2 |
| 79 | 1+15.4iT−79T2 |
| 83 | 1+(12.1−12.1i)T−83iT2 |
| 89 | 1+(9.16−9.16i)T−89iT2 |
| 97 | 1+(10.1+10.1i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02187270258033471667364694374, −9.149877047018607673086603917155, −8.480253403851347330582991488322, −7.52760048231310368150659583009, −6.93240619363106360047198192706, −5.78345553161091382466960814130, −4.56942151507851981626280540177, −4.06520034774877815047634847791, −2.22953969707436585094543426499, −1.17888513327873646033439619151,
1.10959431488628920150437446405, 3.11570543813214050581105733495, 3.76852924375064055021378055185, 4.79003191676737789047365590490, 5.76902237208018730887263107122, 7.24540711618315172626731583655, 7.42990170117202509222450356877, 8.537027082353804669769299242756, 9.647995358056612608454678818658, 10.27917477054087500789819882562