Properties

Label 2-832-13.9-c1-0-22
Degree 22
Conductor 832832
Sign 0.522+0.852i-0.522 + 0.852i
Analytic cond. 6.643556.64355
Root an. cond. 2.577502.57750
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − 1.73i)3-s − 5-s + (−0.499 − 0.866i)9-s + (2 − 3.46i)11-s + (−2.5 − 2.59i)13-s + (−1 + 1.73i)15-s + (−1.5 − 2.59i)17-s + (−1 − 1.73i)19-s + (−1 + 1.73i)23-s − 4·25-s + 4.00·27-s + (2.5 − 4.33i)29-s + 2·31-s + (−3.99 − 6.92i)33-s + (2.5 − 4.33i)37-s + ⋯
L(s)  = 1  + (0.577 − 0.999i)3-s − 0.447·5-s + (−0.166 − 0.288i)9-s + (0.603 − 1.04i)11-s + (−0.693 − 0.720i)13-s + (−0.258 + 0.447i)15-s + (−0.363 − 0.630i)17-s + (−0.229 − 0.397i)19-s + (−0.208 + 0.361i)23-s − 0.800·25-s + 0.769·27-s + (0.464 − 0.804i)29-s + 0.359·31-s + (−0.696 − 1.20i)33-s + (0.410 − 0.711i)37-s + ⋯

Functional equation

Λ(s)=(832s/2ΓC(s)L(s)=((0.522+0.852i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(832s/2ΓC(s+1/2)L(s)=((0.522+0.852i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 832832    =    26132^{6} \cdot 13
Sign: 0.522+0.852i-0.522 + 0.852i
Analytic conductor: 6.643556.64355
Root analytic conductor: 2.577502.57750
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ832(321,)\chi_{832} (321, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 832, ( :1/2), 0.522+0.852i)(2,\ 832,\ (\ :1/2),\ -0.522 + 0.852i)

Particular Values

L(1)L(1) \approx 0.7339021.30965i0.733902 - 1.30965i
L(12)L(\frac12) \approx 0.7339021.30965i0.733902 - 1.30965i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1+(2.5+2.59i)T 1 + (2.5 + 2.59i)T
good3 1+(1+1.73i)T+(1.52.59i)T2 1 + (-1 + 1.73i)T + (-1.5 - 2.59i)T^{2}
5 1+T+5T2 1 + T + 5T^{2}
7 1+(3.5+6.06i)T2 1 + (-3.5 + 6.06i)T^{2}
11 1+(2+3.46i)T+(5.59.52i)T2 1 + (-2 + 3.46i)T + (-5.5 - 9.52i)T^{2}
17 1+(1.5+2.59i)T+(8.5+14.7i)T2 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2}
19 1+(1+1.73i)T+(9.5+16.4i)T2 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2}
23 1+(11.73i)T+(11.519.9i)T2 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2}
29 1+(2.5+4.33i)T+(14.525.1i)T2 1 + (-2.5 + 4.33i)T + (-14.5 - 25.1i)T^{2}
31 12T+31T2 1 - 2T + 31T^{2}
37 1+(2.5+4.33i)T+(18.532.0i)T2 1 + (-2.5 + 4.33i)T + (-18.5 - 32.0i)T^{2}
41 1+(1.52.59i)T+(20.535.5i)T2 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2}
43 1+(2+3.46i)T+(21.5+37.2i)T2 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2}
47 16T+47T2 1 - 6T + 47T^{2}
53 1+13T+53T2 1 + 13T + 53T^{2}
59 1+(610.3i)T+(29.5+51.0i)T2 1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2}
61 1+(3.5+6.06i)T+(30.5+52.8i)T2 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2}
67 1+(712.1i)T+(33.558.0i)T2 1 + (7 - 12.1i)T + (-33.5 - 58.0i)T^{2}
71 1+(3+5.19i)T+(35.5+61.4i)T2 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2}
73 17T+73T2 1 - 7T + 73T^{2}
79 18T+79T2 1 - 8T + 79T^{2}
83 1+4T+83T2 1 + 4T + 83T^{2}
89 1+(712.1i)T+(44.577.0i)T2 1 + (7 - 12.1i)T + (-44.5 - 77.0i)T^{2}
97 1+(11.73i)T+(48.5+84.0i)T2 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.825999399775965767087706022946, −8.858584292226010376783974879840, −8.106070699399653521566029415623, −7.49121473442466862572331520487, −6.65594426196472605741308538527, −5.66476915606323131200315827845, −4.40262243147517537495310653861, −3.20156360415955737004991386498, −2.23065693146653431934752254172, −0.68742810757359115413087742785, 1.90181985042165875705230291766, 3.27425859005683860092995635217, 4.31734404476913735590355326622, 4.64091410519758782338812617929, 6.23694771964597450098093789645, 7.11334738420316164339917363704, 8.113596399110900883304571362436, 8.967165319171174049151709566647, 9.679972346361291225078580527168, 10.23094340367105253418053398955

Graph of the ZZ-function along the critical line