L(s) = 1 | + (1 − 1.73i)3-s − 5-s + (−0.499 − 0.866i)9-s + (2 − 3.46i)11-s + (−2.5 − 2.59i)13-s + (−1 + 1.73i)15-s + (−1.5 − 2.59i)17-s + (−1 − 1.73i)19-s + (−1 + 1.73i)23-s − 4·25-s + 4.00·27-s + (2.5 − 4.33i)29-s + 2·31-s + (−3.99 − 6.92i)33-s + (2.5 − 4.33i)37-s + ⋯ |
L(s) = 1 | + (0.577 − 0.999i)3-s − 0.447·5-s + (−0.166 − 0.288i)9-s + (0.603 − 1.04i)11-s + (−0.693 − 0.720i)13-s + (−0.258 + 0.447i)15-s + (−0.363 − 0.630i)17-s + (−0.229 − 0.397i)19-s + (−0.208 + 0.361i)23-s − 0.800·25-s + 0.769·27-s + (0.464 − 0.804i)29-s + 0.359·31-s + (−0.696 − 1.20i)33-s + (0.410 − 0.711i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.733902 - 1.30965i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.733902 - 1.30965i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (2.5 + 2.59i)T \) |
good | 3 | \( 1 + (-1 + 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + T + 5T^{2} \) |
| 7 | \( 1 + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2 + 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 + 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (-2.5 + 4.33i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 + 13T + 53T^{2} \) |
| 59 | \( 1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7 - 12.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 7T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 + (7 - 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.825999399775965767087706022946, −8.858584292226010376783974879840, −8.106070699399653521566029415623, −7.49121473442466862572331520487, −6.65594426196472605741308538527, −5.66476915606323131200315827845, −4.40262243147517537495310653861, −3.20156360415955737004991386498, −2.23065693146653431934752254172, −0.68742810757359115413087742785,
1.90181985042165875705230291766, 3.27425859005683860092995635217, 4.31734404476913735590355326622, 4.64091410519758782338812617929, 6.23694771964597450098093789645, 7.11334738420316164339917363704, 8.113596399110900883304571362436, 8.967165319171174049151709566647, 9.679972346361291225078580527168, 10.23094340367105253418053398955