Properties

Label 2-832-13.9-c1-0-16
Degree $2$
Conductor $832$
Sign $-0.522 + 0.852i$
Analytic cond. $6.64355$
Root an. cond. $2.57750$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + 1.73i)3-s − 5-s + (−0.499 − 0.866i)9-s + (−2 + 3.46i)11-s + (−2.5 − 2.59i)13-s + (1 − 1.73i)15-s + (−1.5 − 2.59i)17-s + (1 + 1.73i)19-s + (1 − 1.73i)23-s − 4·25-s − 4.00·27-s + (2.5 − 4.33i)29-s − 2·31-s + (−3.99 − 6.92i)33-s + (2.5 − 4.33i)37-s + ⋯
L(s)  = 1  + (−0.577 + 0.999i)3-s − 0.447·5-s + (−0.166 − 0.288i)9-s + (−0.603 + 1.04i)11-s + (−0.693 − 0.720i)13-s + (0.258 − 0.447i)15-s + (−0.363 − 0.630i)17-s + (0.229 + 0.397i)19-s + (0.208 − 0.361i)23-s − 0.800·25-s − 0.769·27-s + (0.464 − 0.804i)29-s − 0.359·31-s + (−0.696 − 1.20i)33-s + (0.410 − 0.711i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $-0.522 + 0.852i$
Analytic conductor: \(6.64355\)
Root analytic conductor: \(2.57750\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{832} (321, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 832,\ (\ :1/2),\ -0.522 + 0.852i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (2.5 + 2.59i)T \)
good3 \( 1 + (1 - 1.73i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + T + 5T^{2} \)
7 \( 1 + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1 + 1.73i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-2.5 + 4.33i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + (-2.5 + 4.33i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + 6T + 47T^{2} \)
53 \( 1 + 13T + 53T^{2} \)
59 \( 1 + (6 + 10.3i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-7 + 12.1i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-3 - 5.19i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 7T + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + (7 - 12.1i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.755939481145026765633752700028, −9.630209143603333530824364613625, −8.034811696720701676218661773854, −7.54637921581084797412542331439, −6.33611272842059421796395011230, −5.11622260764358190081503364725, −4.74305986137614045969954477516, −3.65562182532463787298423412756, −2.30922507337412025737703628465, 0, 1.50748275186166494399882492118, 2.93186251521172723495321887796, 4.21262761918945774011885828446, 5.40004752762507478010660547365, 6.24332479928020471850298565135, 7.07370601698036457028517533921, 7.77262418328361040576312245365, 8.660443607351934605163449136980, 9.629696918347909247258172870597

Graph of the $Z$-function along the critical line