L(s) = 1 | + (−1 + 1.73i)3-s − 5-s + (−0.499 − 0.866i)9-s + (−2 + 3.46i)11-s + (−2.5 − 2.59i)13-s + (1 − 1.73i)15-s + (−1.5 − 2.59i)17-s + (1 + 1.73i)19-s + (1 − 1.73i)23-s − 4·25-s − 4.00·27-s + (2.5 − 4.33i)29-s − 2·31-s + (−3.99 − 6.92i)33-s + (2.5 − 4.33i)37-s + ⋯ |
L(s) = 1 | + (−0.577 + 0.999i)3-s − 0.447·5-s + (−0.166 − 0.288i)9-s + (−0.603 + 1.04i)11-s + (−0.693 − 0.720i)13-s + (0.258 − 0.447i)15-s + (−0.363 − 0.630i)17-s + (0.229 + 0.397i)19-s + (0.208 − 0.361i)23-s − 0.800·25-s − 0.769·27-s + (0.464 − 0.804i)29-s − 0.359·31-s + (−0.696 − 1.20i)33-s + (0.410 − 0.711i)37-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(−0.522+0.852i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(−0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
−0.522+0.852i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(321,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 832, ( :1/2), −0.522+0.852i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(2.5+2.59i)T |
good | 3 | 1+(1−1.73i)T+(−1.5−2.59i)T2 |
| 5 | 1+T+5T2 |
| 7 | 1+(−3.5+6.06i)T2 |
| 11 | 1+(2−3.46i)T+(−5.5−9.52i)T2 |
| 17 | 1+(1.5+2.59i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1−1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1+1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.5+4.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+(−2.5+4.33i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.5−2.59i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2−3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+6T+47T2 |
| 53 | 1+13T+53T2 |
| 59 | 1+(6+10.3i)T+(−29.5+51.0i)T2 |
| 61 | 1+(3.5+6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7+12.1i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−3−5.19i)T+(−35.5+61.4i)T2 |
| 73 | 1−7T+73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−4T+83T2 |
| 89 | 1+(7−12.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−1−1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.755939481145026765633752700028, −9.630209143603333530824364613625, −8.034811696720701676218661773854, −7.54637921581084797412542331439, −6.33611272842059421796395011230, −5.11622260764358190081503364725, −4.74305986137614045969954477516, −3.65562182532463787298423412756, −2.30922507337412025737703628465, 0,
1.50748275186166494399882492118, 2.93186251521172723495321887796, 4.21262761918945774011885828446, 5.40004752762507478010660547365, 6.24332479928020471850298565135, 7.07370601698036457028517533921, 7.77262418328361040576312245365, 8.660443607351934605163449136980, 9.629696918347909247258172870597