L(s) = 1 | + (−0.866 + 1.5i)3-s + 3.46i·5-s + (2.59 − 1.5i)7-s + (4.33 + 2.5i)11-s + (1 − 3.46i)13-s + (−5.19 − 2.99i)15-s + (3.5 + 6.06i)17-s + (4.33 − 2.5i)19-s + 5.19i·21-s + (2.59 − 4.5i)23-s − 6.99·25-s − 5.19·27-s + (−2.5 + 4.33i)29-s − 2i·31-s + (−7.5 + 4.33i)33-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.866i)3-s + 1.54i·5-s + (0.981 − 0.566i)7-s + (1.30 + 0.753i)11-s + (0.277 − 0.960i)13-s + (−1.34 − 0.774i)15-s + (0.848 + 1.47i)17-s + (0.993 − 0.573i)19-s + 1.13i·21-s + (0.541 − 0.938i)23-s − 1.39·25-s − 1.00·27-s + (−0.464 + 0.804i)29-s − 0.359i·31-s + (−1.30 + 0.753i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.01275 + 1.31112i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.01275 + 1.31112i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 3 | \( 1 + (0.866 - 1.5i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 3.46iT - 5T^{2} \) |
| 7 | \( 1 + (-2.59 + 1.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.33 - 2.5i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.5 - 6.06i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.33 + 2.5i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.59 + 4.5i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.5 - 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2iT - 31T^{2} \) |
| 37 | \( 1 + (4.5 + 2.59i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 + 0.866i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.59 + 4.5i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4iT - 47T^{2} \) |
| 53 | \( 1 + 4T + 53T^{2} \) |
| 59 | \( 1 + (6.06 - 3.5i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.59 - 1.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.06 - 3.5i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 3.46iT - 73T^{2} \) |
| 79 | \( 1 + 3.46T + 79T^{2} \) |
| 83 | \( 1 + 14iT - 83T^{2} \) |
| 89 | \( 1 + (-1.5 - 0.866i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.5 + 4.33i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37855538303046272351632864330, −10.14697976683077386098533373380, −8.875654501507909549055467828457, −7.66284171828866836188876963342, −7.10207356397291731865845986530, −6.07121318228199451308780861511, −5.07820939062462916332348453283, −4.05599997123739660320989240945, −3.29395637560105612513211680269, −1.63865794362224080110720347500,
1.09493626110578598642653348604, 1.54146021753320441311826664331, 3.60662304927020795835689457928, 4.85392431774195462267657271737, 5.48757560664145178406598866342, 6.40409613211875862825593521930, 7.48304179116093703173315492948, 8.248679383802748163259605513561, 9.269785943212156608188685962966, 9.441302178174483087967774271641