L(s) = 1 | + (−0.866 + 1.5i)3-s + 3.46i·5-s + (2.59 − 1.5i)7-s + (4.33 + 2.5i)11-s + (1 − 3.46i)13-s + (−5.19 − 2.99i)15-s + (3.5 + 6.06i)17-s + (4.33 − 2.5i)19-s + 5.19i·21-s + (2.59 − 4.5i)23-s − 6.99·25-s − 5.19·27-s + (−2.5 + 4.33i)29-s − 2i·31-s + (−7.5 + 4.33i)33-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.866i)3-s + 1.54i·5-s + (0.981 − 0.566i)7-s + (1.30 + 0.753i)11-s + (0.277 − 0.960i)13-s + (−1.34 − 0.774i)15-s + (0.848 + 1.47i)17-s + (0.993 − 0.573i)19-s + 1.13i·21-s + (0.541 − 0.938i)23-s − 1.39·25-s − 1.00·27-s + (−0.464 + 0.804i)29-s − 0.359i·31-s + (−1.30 + 0.753i)33-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(−0.252−0.967i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(−0.252−0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
−0.252−0.967i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(641,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), −0.252−0.967i)
|
Particular Values
L(1) |
≈ |
1.01275+1.31112i |
L(21) |
≈ |
1.01275+1.31112i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−1+3.46i)T |
good | 3 | 1+(0.866−1.5i)T+(−1.5−2.59i)T2 |
| 5 | 1−3.46iT−5T2 |
| 7 | 1+(−2.59+1.5i)T+(3.5−6.06i)T2 |
| 11 | 1+(−4.33−2.5i)T+(5.5+9.52i)T2 |
| 17 | 1+(−3.5−6.06i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−4.33+2.5i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.59+4.5i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.5−4.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+2iT−31T2 |
| 37 | 1+(4.5+2.59i)T+(18.5+32.0i)T2 |
| 41 | 1+(1.5+0.866i)T+(20.5+35.5i)T2 |
| 43 | 1+(2.59+4.5i)T+(−21.5+37.2i)T2 |
| 47 | 1+4iT−47T2 |
| 53 | 1+4T+53T2 |
| 59 | 1+(6.06−3.5i)T+(29.5−51.0i)T2 |
| 61 | 1+(−1.5−2.59i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.59−1.5i)T+(33.5+58.0i)T2 |
| 71 | 1+(6.06−3.5i)T+(35.5−61.4i)T2 |
| 73 | 1+3.46iT−73T2 |
| 79 | 1+3.46T+79T2 |
| 83 | 1+14iT−83T2 |
| 89 | 1+(−1.5−0.866i)T+(44.5+77.0i)T2 |
| 97 | 1+(−7.5+4.33i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37855538303046272351632864330, −10.14697976683077386098533373380, −8.875654501507909549055467828457, −7.66284171828866836188876963342, −7.10207356397291731865845986530, −6.07121318228199451308780861511, −5.07820939062462916332348453283, −4.05599997123739660320989240945, −3.29395637560105612513211680269, −1.63865794362224080110720347500,
1.09493626110578598642653348604, 1.54146021753320441311826664331, 3.60662304927020795835689457928, 4.85392431774195462267657271737, 5.48757560664145178406598866342, 6.40409613211875862825593521930, 7.48304179116093703173315492948, 8.248679383802748163259605513561, 9.269785943212156608188685962966, 9.441302178174483087967774271641